Structure of Centers of Matrix Emission of the Undoped and RE-Doped Scheelite-Type Lead Tungstate Crystals
DOI:
https://doi.org/10.15407/ujpe64.9.837Keywords:
luminescence center, rare earth ion, impurity, lead tungstate, matrix emissionAbstract
The paper reports the investigation of a structure of luminescence spectra of PbWO4 (PWO) crystals. The doping of the samples with rare earth (RE) impurities is used in order to obtain more information about the composition of spectra of the PWO matrix emission and the structure of its luminescence centers. The decomposition of the emission spectra onto individual bands has shown that 5 bands contribute to the total spectra of all the undoped and RE-doped samples at 10 K. The maxima of the obtained bands are 1.95, 2.2, 2.45, 2.7, and 3.0 eV. Effects of the RE-doping and the annealing on relative intensities of these bands are considered. The nature of luminescence and the structure of the centers involved in the excitation and emission processes responsible for each of the separated bands are discussed.
References
R. Djilkibaev, L. Heinrich, A.I. Mincer, C. Musso, P. Nemethy, J. Sculli, A. Toropin, L. Zhao. Lead-tungstate scintillator studies for a fast low-energy calorimeter. J. Instrumentation 5, P01003 (2010). https://doi.org/10.1088/1748-0221/5/01/P01003
P. Lecoq. Ten years of lead tungstate development. Nucl. Instrum. Methods Phys. Res. A 537, 15 (2005). https://doi.org/10.1016/j.nima.2004.07.223
V.V. Laguta, M. Nikl, S. Zazubovich. Physics of lead tungstate scintillators. IEEE Trans. Nucl. Sci. 55, 1275 (2008). https://doi.org/10.1109/TNS.2007.907991
E. Auffray, M.V. Korzhik, S. Zazubovich. Luminescence and photothermally stimulated defects creation processes in PbWO 4 : La3+, Y3+ (PWO II) crystals. J. Lumin. 168, 256 (2015).https://doi.org/10.1016/j.jlumin.2015.08.028
K.W. Meert, J.J. Joos, D. Poelman, P.F. Smet. Investigation of the quenching mechanisms of Tb3+ doped scheelites. J. Lumin. 173, 263 (2016). https://doi.org/10.1016/j.jlumin.2015.12.045
D. Millers, L. Grigorjeva, S. Chernov, A. Popov, P. Lecoq, E. Auffray. The temperature dependence of scintillation parameters in PbWO4 crystals. Phys. Stat. Sol. (b) 203, 585 (1997). https://doi.org/10.1002/1521-3951(199710)203:2<585::AID-PSSB585>3.0.CO;2-8
M. Fujita, M. Itoh, M. Horimoto, H. Yokota. Fine structure of the exciton band and anisotropic optical constants in scheelite PbWO4 crystals. Phys. Rev. B 65, 195105 (2002). https://doi.org/10.1103/PhysRevB.65.195105
M. Itoh, T. Sakurai. Time-resolved luminescence from Jahn-Teller split states of self-trapped excitons in PbWO4. Phys. Rev. B 73, 235106 (2006). https://doi.org/10.1103/PhysRevB.73.235106
M. Anicete-Santos, E. Orhan, M.A. De Maurera, L.G.P. Sim˜oes, A.G. Souza, P.S. Pizani, E.R. Leite, J.A. Varela, J. Andres, A. Beltran, E. Longo. Contribution of structural order-disorder to the green photoluminescence of PbWO4. Phys. Rev. B 75, 165105 (2007). https://doi.org/10.1103/PhysRevB.75.165105
O. Antonenko, O. Chukova, Yu. Hizhnyi, S. Nedilko, V. Scherbatskyi. Luminescent characterization of lead tungstate crystals doped with europium, praseodymium, and ytterbium ions. Optical Materials 28, 643 (2006). https://doi.org/10.1016/j.optmat.2005.09.009
S. Burachas, A. Apanasenko, B. Grinyov, V. Ryzhikov, K. Katrunov, M. Starzhinskiy, M. Ippolitov, V. Manko, G. Tamulaitis. Improvement of optical and luminescent characteristics and radiation hardness of PbWO4 crystals by doping with Y, Sb, and Mo impurities. Int. J. Inorganic Materials 3, 1101 (2001). https://doi.org/10.1016/S1466-6049(01)00105-2
P. Lecoq. Organization of the production of 100 tons of lead tungstate crystals for the CMS experiment at CERN. Optical Materials 26, 523 (2004). https://doi.org/10.1016/j.optmat.2003.09.009
A.N. Caruso. The physics of solid-state neutron detector materials and geometries. J. Phys.: Condensed Matter 22, 443201 (2010). https://doi.org/10.1088/0953-8984/22/44/443201
D. Klimm, P. Reiche. Lead Tungstate (PWO) and other Scintillator Crystals. In: Encyclopedia of Materials: Science and Technology. Edited by K.H.J. Buschow et al. (Elsevier, 2001). https://doi.org/10.1016/B0-08-043152-6/00782-8
M.B. Kosmyna, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov. Development of growth technologies for the photonic single crystals by the Czochralski method at Institute for Single Crystals, NAS of Ukraine. Acta Phys. Polon. 124, 305 (2013). https://doi.org/10.12693/APhysPolA.124.305
X. Wang, B. Liu, Y. Yang. Luminescence properties of PbWO4 : Eu3+ nanocrystals synthesized by a hydrothermal method. Optics and Laser Technology 58, 84 (2014). https://doi.org/10.1016/j.optlastec.2013.11.003
R. Reisfeld. New developments in luminescence for solar energy utilization. Optical Materials 32, 850 (2011). https://doi.org/10.1016/j.optmat.2010.04.034
A. Hallaoui, A. Taoufyq, M. Arab, B. Bakiz, A. Benlhachemi, L. Bazzi, S. Villain, J-C. Valmalette, F. Guinneton, J-R. Gavarri. Influence of chemical substitution on the photoluminescence of Sr1−xPbxWO4 solid solution. J. Solid State Chem. 227, 186 (2015). https://doi.org/10.1016/j.jssc.2015.04.004
K.V. Dabre, S.J. Dhoble, J. Lochab. Synthesis and luminescence properties of Ce3+ doped MWO4 (M = Ca, Sr and Ba) microcrystalline phosphors. J. Lumin. 149, 348 (2014). https://doi.org/10.1016/j.jlumin.2014.01.048
Y. Zorenko, V. Gorbenko, A. Voloshinovskii, G. Stryganyuk, S. Nedilko, V. Degoda, O. Chukova. Luminescence of Sc-related centers in single crystalline films of Lu3Al5O12 garnet. Phys. Stat. Sol. (c) 2, 105 (2005). https://doi.org/10.1002/pssc.200460122
V.B. Mikhailik, H. Kraus, M. Itoh, D. Iri, M. Uchida. Radiative decay of self-trapped excitons in CaMoO4 and MgMoO4 crystals. J. Phys.: Condensed Matter 17, 7209 (2005). https://doi.org/10.1088/0953-8984/17/46/005
F. Kang, Y. Hu, H. Wu, Z. Mu, G. Ju, C. Fu, N. Li. Luminescence and red long afterglow investigation of Eu3+-Sm3+ co-doped CaWO4 phosphor. J. Lumin. 132, 887 (2012). https://doi.org/10.1016/j.jlumin.2011.11.022
N.V. Klassen, S.Z. Shmurak, B.S. Redkin, S.I. Rybchenko, V.V. Sinitzin. Processing technology and scintillation performance of PWO. In: Proc. Int. Workshop on Lead Tungstate Crystals. Roma, Italy, October 12-14, 1998. Edited by S. Baccaro et al., La Sapienza Press, pp. 35-47.
P. Bohachek, N. Solovieva, M. Nikl. Formation of absorption and emission centres in PbWO4 surface layers induced by mechanical processing. Phys. Stat. Sol. (c) 2, 81 (2005). https://doi.org/10.1002/pssc.200460116
S.G. Nedilko, A.S. Voloshinovskii, M.O. Krisjuk, Z.T. Moroz, M.V. Pashkovskyi. Impure and defect lead tungstate single crystals: X-ray and photoluminescence properties. In: Proceedings of SCINT'95 Conference. Edited by P. Dorenbos, C.W.E. van Eijk (Delft University Press, 1996), pp. 263-267 [ISBN: 9789040712159].
V. Babin, P. Bohachek, A. Krasnikov, M. Nikl, A. Stolovits, S. Zazubovich. Origin of green luminescence in PbWO4 crystals. J. Lumin. 124, 113 (2007). https://doi.org/10.1016/j.jlumin.2006.02.006
O. Chukova, S. Nedilko. Study of RE-impurity effects on exciton luminescence of PbWO4 single crystals grown by Czochralski method. Optical Materials 35, 1735 (2013). https://doi.org/10.1016/j.optmat.2013.05.019
P. Fabeni, V. Kiisk, A. Krasnikov, M. Nikl, G.P. Pazzi, I. Silidos, S. Zazubovich. Tunneling recombination processes in PbWO4 crystals. Phys. Stat. Sol. (c) 4, 918 (2007). https://doi.org/10.1002/pssc.200673742
P. Bohacek, N. Senguttuvan, V. Kiisk, A. Krasnikov, M. Nikl, I. Sildos, Y. Usuki, S. Zazubovich. Red emission of PbWO4 crystals. Radiation Measurements 38, 623 (2004). https://doi.org/10.1016/j.radmeas.2004.02.008
Y. Huang, W. Zhu. The effects of sequential annealing in air atmosphere on luminescence properties of PbWO4 single crystal. J. Electron Spectros. Rel. Phenomena 133, 39 (2003). https://doi.org/10.1016/S0368-2048(03)00140-3
T. Fujita, I. Kawada, K. Kato. BaWO4 − II (a high-pressure form). Acta Crystallogr. B 30, 2069 (1974). https://doi.org/10.1107/S0567740874006431
B.G. Wybourne. Spectroscopic Properties of Ions in Crystals (Wiley, 1965). https://doi.org/10.1063/1.3047727
O. Chukova, S. Nedilko, V. Scherbatskyi. Effects of RE doping on formation of emission centers in PbWO4 crystals. In: Proc. of Intern. Conf. SCINT, Alushta, 2005. Edited by A. Gektin, B. Grinyov (2006), pp. 212-215.
O. Chukova, S. Nedilko, V. Scherbatskyi. Luminescent spectroscopy of lead tungstate crystals doped with europium ions. Phys. Stat. Sol. (c) 4, 8970 (2007). https://doi.org/10.1002/pssc.200673711
M.U. Bilyi, M. Diab, L.M. Limarenko, Z.T. Moroz, S.G. Nedilko, M.V. Pashkovskyi. Energies of electron states of Dy3+, Sm3+ and Pr3+ impurity ions in the lead and cadmium tungstate crystals. Ukr. J. Phys. 43, 864 (1998).
A. Nosenko, L. Kostyk, L. Koslovska. Some peculiarities of the luminescence of the lead tungstate crystals. J. Lumin. 90, 49 (2000). https://doi.org/10.1016/S0022-2313(99)00606-7
P.A.M. Berdowski, J. Van Keulen, G. Blasse. Luminescence and energy migration characteristics of EuWO4Cl. J. Solid State Chem. 63, 284 (1986). https://doi.org/10.1016/0022-4596(86)90179-9
O. Chukova, S. Nedilko, V. Scherbatskyi. Luminescent spectroscopy and structure of centers of the impurity Eu3+ ions in lead tungstate crystals. J. Lumin. 130, 1805 (2010). https://doi.org/10.1016/j.jlumin.2010.04.014
Y. Huang, K.H. Jang, K. Jang, H.J. Seo. Luminescence spectra of Eu3+ ions and interstitial oxygen in PbWO4 crystal. Physica B 403, 75 (2008). https://doi.org/10.1016/j.physb.2007.08.014
Y. Huang, H.J. Seo. Multisite structure of PbWO4 : Eu3+ crystals investigated by site-selective laser-excitation spectroscopy. J. Phys. Chem. A 113, 5317 (2009). https://doi.org/10.1021/jp901099h
S. Burachas, S. Beloglovsky, I. Makov, Yu. Saveliev, N. Vassilieva, M. Ippolitov, V. Manko, S. Nikulin, A. Vassiliev, A. Apanasenko, G. Tamulaitis. Phase transition influence on characteristics of PbWO4 scintillators. Functional Materials 9, 297 (2002).
S. Burachas, S. Beloglovsky, I. Makov, Y. Saveliev, M. Ippolitov, V. Manko, S. Nikulin, A. Nyanin, A. Vassiliev, A. Apanasenko, G. Tamulaitis. Influence of variable tungsten valency on optical transmittance and radiation hardness of lead tungstate (PWO) scintillation crystals. Nucl. Instrum. Methods Phys. Res. A 505, 656 (2003). https://doi.org/10.1016/S0168-9002(03)00991-4
W. Li, X. Feng, Y. Huang. Effects of Cr doping on the optical characteristics of PbWO4 crystals. J. Lumin. 113, 109 (2005). https://doi.org/10.1016/j.jlumin.2004.09.112
T.T. Basiev, V.N. Baumer, Yu.N. Gorobets, M.E. Doroshenko, M.B. Kosmyna, B.P. Nazarenko, V.V. Osiko, V.M. Puzikov. Peculiarities of the growth of PbWO4:Nd3+ and PbMoO4:Nd3+ single crystals. Crystallography Reports 54, 697 (2009). https://doi.org/10.1134/S1063774509040269
W. Li, Y. Huang, X. Feng. The effects of Nd impurity on the optical, dielectric and electrical properties of PbWO4 single crystals. Phys. Stat. Sol. (a) 202, 2531 (2005). https://doi.org/10.1002/pssa.200520087
M. Bohm, A. Hofstaetter, M. Luh, B.K. Meyer, A. Sharmann, M.V. Korzhik, O.V. Kondratiev, A.E. Borisevich, V.V. Laguta, P. Lecoq, E. Auffray. Thermally stimulated luminescence properties of lead tungstate crystals. In: Proceedings of SCINT'99 Conference. Edited by V. Mikhailin (Moscow State University Press, 2000), pp. 619-626.
V.V. Laguta, M. Martini, A. Vedda, M. Nikl, E. Mihokova, P. Bohacek, J. Rosa. Photoinduced Pb+ center in PbWO4: Electron spin resonance and thermally stimulated luminescence study. Phys. Rev. B 64, 165102 (2001). https://doi.org/10.1103/PhysRevB.64.165102
J.A. Groenink, H. Binsma. Electrical conductivity and defect chemistry of PbMoO4 and PbWO4. J. Solid State Chem. 29, 227 (1979). https://doi.org/10.1016/0022-4596(79)90228-7
A.N. Annenkov, E. Auffray, M.V. Korzhik, P. Lecoq, J.P. Peigneux. On the origin of the transmission damage in lead tungstate crystals under irradiation. Phys. Stat. Sol. (a) 170, 47 (1998). https://doi.org/10.1002/(SICI)1521-396X(199811)170:1<47::AID-PSSA47>3.0.CO;2-W
C. Yang, G. Chen, P. Shi. Effect of lead vaporization in growth process on the luminescence property of PbWO4 crystal. J. Lumin. 93, 249 (2001). https://doi.org/10.1016/S0022-2313(01)00193-4
O. Chukova, S. Nedilko, V. Scherbatskyi. Effect of annealing on luminescence properties of the undoped and rare earth doped lead tungstate crystals. Optical Materials 34, 2071 (2012). https://doi.org/10.1016/j.optmat.2012.04.013
S. Nedilko, O. Chukova. Study of effects of rare earth impurities on structure of matrix emission of the lead tungstate crystals. IEEE Xplore, Conf. Proc. 6912376: Intern. Conf. on Oxide Materials for Electronic Engineering - fabrication properties and applications, 2014. https://doi.org/10.1109/OMEE.2014.6912376
L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink. Charge transfer luminescence of Yb3+. J. Lumin. 91, 177 (2000). https://doi.org/10.1016/S0022-2313(00)00214-3
I.A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, D. Spassky. Charge transfer fluorescence and f-f luminescence in ytterbium compounds. Optical Materials 24, 267 (2003). https://doi.org/10.1016/S0925-3467(03)00133-2
Y. Huang, X. Feng, W. Zhu. Thermal annealing behavior of luminescence of Gd3+-doped PbWO4 single crystal in air atmosphere. Appl. Phys. A 80, 409 (2005). https://doi.org/10.1007/s00339-003-2376-1
S. Nedilko, O. Chukova. Luminescent spectroscopy of the Yb3+ ions in the PbWO4 crystal. Acta Phys. Polon. 133, 918(2018). https://doi.org/10.12693/APhysPolA.133.918
M. Fujita, M. Itoh, H. Mitani, Sangeeta, M. Tyagi. Exciton transition and electronic structure of PbMoO4 crystals studied by polarized light. Phys. Stat. Sol. (b) 247, 405 (2010). https://doi.org/10.1002/pssb.200945447
P. Lecoq, I. Dafinei, E. Auffray, M. Schneegans, M.V. Korzhik, O.V. Missevitch, V.B. Pavlenko, A.A. Fedorov, A.N. Annenkov, V.L. Kostylev, V.D. Ligun. Lead tungstate (PbWO4) scintillators for LHC EM calorimetry. Nucl. Instrum. Methods Phys. Res. A 365, 291 (1995). https://doi.org/10.1016/0168-9002(95)00589-7
M. Itoh, H. Yokota, M. Horimoto, M. Fujita, Y. Usuki. Urbach Rule in PbWO4. Phys. Stat. Sol. (b) 231, 595 (2002). https://doi.org/10.1002/1521-3951(200206)231:2<595::AID-PSSB595>3.0.CO;2-W
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.