Gas Flame Structure and Optical Assessment of the Flame Speed and Combustion Efficiency

Keywords: propane-butane flame, flame structure, flame speed, ambient air, flame study


We perform the analysis of a prepared propane-butane flame structure, by using the computer processing of the radiation from the chemical reaction zone. We mark out the stoichiometric reaction along with the zones of the external oxidant inflow into the flame for different burner diameters. We suggest a method of determining the normal flame speed based on catching the moment of the complete fuel combustion in the upper part of a flame. We show a role of the external oxidant inflow in the kinetic processes within the burning zone. The absolute value of the normal component of the flame speed and its dependence on the burner diameter and on the excess oxidant ratio for a prepared propane-butane flame are determined experimentally.


L. Pizzuti, C.A. Martins, P.T. Lacava. Laminar burning velocity and flammability limits in biogas: A literature review. Renewable and Sustainable Energy Reviews 62, 856 (2016).

Roopesh Kumar Mehra, Hao Duan, Romualdas Jukneleviˇcius, Fanhua Ma, Junyin Li. Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines - a comprehensive review. Renewable and Sustainable Energy Reviews 80, 1458 (2017).

A. Sofianopoulos, D.N. Assanis, S. Mamalis. Effects of hydrogen addition on automotive lean-burn natural gas engines: Critical review. J. Energy Engineering 142, E4015010 (2016).

Panfeng Han, M. David Checkel, Brian A. Fleck, Natalie L. Nowicki. Burning velocity of methane/diluent mixture with reformer gas addition. Fuel 86, 585 (2007).

A.N. Mazas, D.A. Lacoste, T. Schuller. Experimental and numerical investigation on the laminar flame speed of CH4/O2 mixtures diluted with CO2 and H2O. In: Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air GT2010 (ASME, 2010).

B.R. Stanmore, J.F. Brilhac, P. Gilot. The oxidation of soot: A review of experiments, mechanisms and models. Carbon 39, 2247 (2001).

C.J. Rallis, A.M. Garforth. The determination of laminar burning velocity. Progress in Energy and Combustion Science 6, 303 (1980).

D.B. Spalding. Mathematical models of turbulent flames; A review. Combust. Sci. Techn. 13, 3 (1976).

T. Lieuwen. Modeling premixed combustion-acoustic wave interactions: A review. J. Propulsion and Power 19, 5 (2003).

V.V. Golub, D.I. Baklanov, S.V. Golovastov, K.V. Ivanov, M.F. Ivanov, A.D. Kiverin, V.V. Volodin. Influence of an acoustic field on flame development and transition to detonation. High Temp 48, 860 (2010).

Alexander A. Konnov, Akram Mohammad, Velamati Ratna Kishore, Nam Il Kim, Chockalingam Prathap, Sudarshan Kumar. A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures. Progress in Energy and Combustion Science 68, 197 (2018).

Oras Khudhair, Haroun A.K. Shahad. A review of laminar burning velocity and flame speed of gases and liquid fuels. Int. J. Current Engin. Technol. 7, 183 (2017).

F.N. Egolfopoulos, N. Hansen, Y. Ju, K. Kohse-H¨oinghaus, C.K. Law, F. Qi. Advances and challenges in laminar flame experiments and implications for combustion chemistry. Progress in Energy and Combustion Science 43, 36 (2014).

G.E. Andrews, D. Bradley. Determination of burning velocities: A critical review. Combustion and Flame 18, 133 (1972).

Yu.V. Polezhaev, I.L. Mostinskii. The normal flame velocity and analysis of the effect of the system parameters on this velocity. High Temperature 43, 937 (2005).

Yu.N. Shebeko, A.Yu. Shebeko. About the constancy of the normal burning velocity of gaseous mixtures near flammability limits in gases. Fire Safety 2, 106 (2014) (in Russian).

A. Popov, A. Tyurin, V. Tkachenko, A. Bekshaev, V. Kalinchak, M. Trofimenko. Speckle-interferometric approach to flame diagnostics. In: Imaging and Applied Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper JT5A.43.

V.V. Kalinchak, F.F. Karimova, S.G. Orlovskaya, M.S. Shkoropado. Image processing for determination of the flame speed. In: 16th International Conference "Digital Signal Processing and its Applications" (DSPA-2014), 2014 (March 26-28, 2014 Moscow, Russia).

Irvin Glassman, Richard A. Yetter. Combustion (Academic Press, 2008).

M.Yu. Trofimenko, S.K. Aslanov, V.P. Smolyar. Electrical structure of the jet of a gas mixture flame. Surface Engineering and Applied Electrochemistry 50, 275 (2014).

Zhenyan Guo, Yang Song, Qun Yuan, Tuya Wulan, Lei Chen. Simultaneous reconstruction of 3D refractive index, temperature, and intensity distribution of combustion flame by double computed tomography technologies based on spatial phase-shifting method. Optics Communications 393, 123 (2017).

A.A. Vasiliev, A.V. Trilis. Velocity of deflagration combustion at high pressures and temperatures. Thermophysics and Aeromechanics 20, 605 (2013).

V.Yu. Polshikov. Mathematical model of the propanebutane mixture burning under deficiency in oxidizer in diffusion burner. in Proceedings of the International scientific conference (Chita, April 2012) ( Molodoi Uch. Publ., 2012), pp.130-133. (in Russian)

E.A. Fedyanov, E.A. Zakharov, Y.V. Levin, D.S. Gavrilov. Experimental study of combustion of propane-butane-air mixture with addition of hydrogen. Bulletin of Saratov State Technical University 11, 104 (2013) (in Russian).

Yu.P. Kluchka, A.I. Tarariev. Analysis of fire and explosion hazard in the propane-butane gas storage system. Questions of Fire Safety 34, 98 (2013) (in Russian).

A.I. Grushevskiy, A.S. Kashura, A.I. Blyankinshtein, E.S. Volodin, A.M. Askhabov. Ecological Properties of the Automotive Operational Materials (Siberian Federal Univ., 2015) (in Russian).

GOST 27578-87 "Liquefied hydrocarbon gases for motor transport. Specifications".

GOST 20448-90 "Liquefied hydrocarbon fuel gases for domestic use. Specifications".

V. Lebourgeois, A. B'egu'e, S. Labb'e, B. Mallavan, L. Pr'evot, B. Roux. Can commercial digital cameras be used as multispectral sensors? A crop monitoring test. Sensors 8, 7300 (2008).

M.Yu. Trofimenko, S.K. Aslanov, V.P. Smolyar. Structural changes in the gas flame upon the pulsating combustion mode onset. Ukr. J. Phys. 59, 359 (2014).

M.Yu. Trofimenko, S.K. Aslanov, G.S. Dragan, V.P. Smolyar. The normal component of a gas flame speed. Ukr. J. Phys. 62, 214 (2017).

M.Yu. Trofimenko, S.K. Aslanov, A.Ya. Bekshaev, V.P. Smolyar. Optical determination of the normal component of the gas flame speed. In Proceedings of the 7th IEEE International Conference on Advanced Optoelectronics and Lasers, CAOL 2016 (Odessa; Ukraine, 2016), Article number 7851389.

A.V. Tupikin, P.K. Tretyakov, N.V. Denisova, V.V. Zamashchikov, V.S. Kozulin. Diffusion flame in an electric field with a variable spatial configuration. Combustion, Explosion, and Shock Waves 52, 167 (2016).

How to Cite
Trofimenko, M., Aslanov, S., Dragan, G., & Smolyar, V. (2020). Gas Flame Structure and Optical Assessment of the Flame Speed and Combustion Efficiency. Ukrainian Journal of Physics, 65(6), 461.
Optics, atoms and molecules