A Fifth-Order Nonlinear Schrödinger Equation for Waves on the Surface of Finite-Depth Fluid

Authors

  • Yu.V. Sedletsky Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.1.41

Keywords:

nonlinear Schr¨odinger equation, fifth-order nonlinearity, finite-depth fluid

Abstract

We derive a high-order nonlinear Schr¨odinger equation with fifth-order nonlinearity for the envelope of waves on the surface of a finite-depth irrotational, inviscid, and incompressible fluid over the flat bottom. This equation includes the fourth-order dispersion, cubic-quintic nonlinearity, and cubic nonlinear dispersion effects. The coefficients of this equation are given as functions of one dimensionless parameter kℎ, where k is the carrier wave number, and ℎ is the undisturbed fluid depth. These coefficients stay bounded in the infinite-depth limit.

References

M. Klein, M. Dudek, G. F. Clauss, S. Ehlers, J. Behrendt, N. Hoffmann, M. Onorato. On the deterministic prediction of water waves. Fluids 5, 9 (2020).

https://doi.org/10.3390/fluids5010009

Yu.V. Sedletsky. The fourth-order nonlinear Schr¨odinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid. JETP 97 (1), 180 (2003).

https://doi.org/10.1134/1.1600810

A.V. Slunyaev. A high-order nonlinear envelope equation for gravity waves in finite-depth water. JETP 101 (5), 926 (2005).

https://doi.org/10.1134/1.2149072

H. Hasimoto, H. Ono. Nonlinear Modulation of Gravity Waves. J. Phys. Soc. Jpn. 33, 805 (1972).

https://doi.org/10.1143/JPSJ.33.805

V.H. Chu, C.C. Mei. On slowly-varying Stokes waves. J. Fluid Mech. 41, 873 (1970).

https://doi.org/10.1017/S0022112070000988

Y. Kodama, A. Hasegawa. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electronics 23(5), 510 (1987).

https://doi.org/10.1109/JQE.1987.1073392

V.E. Zakharov, E.A. Kuznetsov. Optical solitons and quasisolitons. JETP 86 (5), 1035 (1998).

https://doi.org/10.1134/1.558551

Yu.V. Sedletsky, I.S. Gandzha. A sixth-order nonlinear Schr¨odinger equation as a reduction of the nonlinear Klein-Gordon equation for slowly modulated wave trains. Nonlinear Dynamics 94, 1921 (2018).

https://doi.org/10.1007/s11071-018-4465-x

I.S. Gandzha, Yu.V. Sedletsky. A high-order nonlinear Schr¨odinger equation as a variational problem for the averaged Lagrangian of the nonlinear Klein-Gordon equation. Nonlinear Dynamics 98, 359 (2019).

https://doi.org/10.1007/s11071-019-05197-x

Yu.V. Sedletsky, I.S. Gandzha. Relationship between the Hamiltonian and non-Hamiltonian forms of a fourth-order nonlinear Schr¨odinger equation. Phys. Rev. E 102, 202202 (2020).

https://doi.org/10.1103/PhysRevE.102.022202

Sh. Amiranashvili, U. Bandelow, N. Akhmediev. Few-cycle optical solitary waves in nonlinear dispersive media. Phys. Rev. A 87, 013805 (2013).

https://doi.org/10.1103/PhysRevA.87.013805

A. Ankiewicz, Y. Wang, S. Wabnitz, N. Akhmediev. Extended nonlinear Schrцdinger equation with higher-order odd and even terms and its rogue wave solutions. Phys. Rev. E 89, 012907 (2014).

https://doi.org/10.1103/PhysRevE.89.012907

A. Chowdury, D.J. Kedziora, A. Ankiewicz, N. Akhmediev. Soliton solutions of an integrable nonlinear Schrцdinger equation with quintic terms. Phys. Rev. E 90, 032922 (2014).

https://doi.org/10.1103/PhysRevE.90.032922

A. Ankiewicz, D.J. Kedziora, A. Chowdury, U. Bandelow, N. Akhmediev. Infinite hierarchy of nonlinear Schr¨odinger equations and their solutions. Phys. Rev. E 93, 012206 (2016).

https://doi.org/10.1103/PhysRevE.93.012206

H. Leblond, D. Mihalache. Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61 (2013).

https://doi.org/10.1016/j.physrep.2012.10.006

K.B. Dysthe. Note on a modification to the nonlinear Schr¨odinger equation for application to deep water waves. Proc. R. Soc. Lond. A 369, 105 (1979).

https://doi.org/10.1098/rspa.1979.0154

S. Debsarma, K.P. Das. A higher-order nonlinear evolution equation for broader bandwidth gravity waves in deep water. Phys. Fluids 17, 104101 (2005).

https://doi.org/10.1063/1.2046714

I.S. Gandzha, Yu.V. Sedletsky, D.S. Dutykh. High-order nonlinear Schr¨odinger equation for the envelope of slowly modulated gravity waves on the surface of finite-depth fluid and its quasi-soliton solutions Ukr. J. Phys. 59 (12), 1201 (2014).

https://doi.org/10.15407/ujpe59.12.1201

M.J. Potasek, M. Tabor. Exact solutions for an extended nonlinear Schr¨odinger equation. Phys. Lett. A 154, 449 (1991).

https://doi.org/10.1016/0375-9601(91)90971-A

I.S. Gandzha, Yu.V. Sedletsky. Bright and dark solitons on the surface of finite-depth fluid below the modulation instability threshold. Phys. Lett. A 381, 1784 (2017).

https://doi.org/10.1016/j.physleta.2017.02.052

N.L. Tsitsas, N. Rompotis, I. Kourakis, P.G. Kevrekidis, D.J. Frantzeskakis. Higher-order effects and ultrashort solitons in left-handed metamaterials. Phys. Rev. E 79, 037601 (2009).

https://doi.org/10.1103/PhysRevE.79.037601

A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev, A. Sergeeva, E. Pelinovsky, N. Akhmediev. Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 056601 (2012).

https://doi.org/10.1103/PhysRevE.86.056601

R.S. Johnson. On the modulation of water waves in the neighbourhood of kℎ = 1.363. Proc. R. Soc. Lond. A 357, 131 (1977).

https://doi.org/10.1098/rspa.1977.0159

T. Kakutani, K. Michihiro. Marginal state of modulational instability-note on Benjamin-Feir instability. J. Phys. Soc. Jpn. 52, 4129 (1983).

https://doi.org/10.1143/JPSJ.52.4129

U. Brinch-Nielsen, I.G. Jonsson. Fourth order evolution equations and stability analysis for stokes waves on arbitrary water depth. Wave Motion 8, 455 (1986).

https://doi.org/10.1016/0165-2125(86)90030-2

W. Craig, P. Guyenne, C. Sulem. A Hamiltonian approach to nonlinear modulation of surface water waves. Wave Motion 47, 552 (2010).

https://doi.org/10.1016/j.wavemoti.2010.04.002

O. Gramstad, K. Trulsen. Hamiltonian form of the modified nonlinear Schr¨odinger equation for gravity waves on arbitrary depth. J. Fluid Mech. 670, 404 (2011).

https://doi.org/10.1017/S0022112010005355

O. Gramstad. The Zakharov equation with separate mean flow and mean surface. J. Fluid Mech. 740, 254 (2014).

https://doi.org/10.1017/jfm.2013.649

A.I. Dyachenko, D.I. Kachulin, V.E. Zakharov. Super compact equation for water waves. J. Fluid Mech. 828, 661 (2017).

https://doi.org/10.1017/jfm.2017.529

A.I. Dyachenko, D.I. Kachulin, V.E. Zakharov. Envelope equation for water waves. J. Ocean Eng. Mar. Energy 3, 409 (2017).

https://doi.org/10.1007/s40722-017-0100-z

N.V. Nguyen, C. Liu. Some models for the interaction of long and short waves in dispersive media: Part I. Derivation. Water Waves (2020).

https://doi.org/10.1007/s42286-020-00038-6

Downloads

Published

2021-01-29

How to Cite

Sedletsky, Y. (2021). A Fifth-Order Nonlinear Schrödinger Equation for Waves on the Surface of Finite-Depth Fluid. Ukrainian Journal of Physics, 66(1), 41. https://doi.org/10.15407/ujpe66.1.41

Issue

Section

General physics