Characteristic Changes in the Density and Shear Viscosity of Human Blood Plasma with Varying Protein Concentration

  • N. P. Malomuzh I.I. Mechnikov National University of Odessa
  • L. A. Bulavin Taras Shevchenko National University of Kyiv
  • V. Ya. Gotsulskyi I.I. Mechnikov National University of Odessa
  • A. A. Guslisty Odessa Regional Medical Center of Mental Health
Keywords: blood plasma, density, shear viscosity, protein concentration, oligomerization of biomolecules

Abstract

The density and shear viscosity of human blood plasma and their dependence on the concentration of proteins (albumin, y-globulin, fibrinogen, etc.) entering the natural blood composition have been studied. The biomaterial concentration is varied by diluting the blood plasma with the isotonic aqueous solution. It is shown that a decrease in the biomaterial concentration down to 0.91 of its initial value leads to a drastic change in the plasma density and to a change in the character of the concentration dependence of the shear viscosity of blood plasma. A hypothesis is put forward that the observed changes in the density and shear viscosity result from the structural transformations induced by oligomerization processes; first of all, by the albumin dimerization. A conclusion is drawn that the introduced blood substitutes should not exceed 10% of the blood mass; otherwise, structural transformations of a biomaterial in blood plasma can be provoked.

References

G.D.O. Lowe, J.C. Barbenel. Plasma and blood viscosity. In: Clinical Blood Rheology, edited by G.D.O. Lowe (CRC Press, 1988), V. 1, p. 11. https://doi.org/10.1201/9780429261176-2

M. Brust, C. Schaefer, R. Doerr, L. Pan, M. Garcia, P.E. Arratia, C.Wagner. Rheology of human blood plasma: Viscoelastic versus Newtonian behavior. Phys. Rev. Lett. 110, 078305 (2013). https://doi.org/10.1103/PhysRevLett.110.078305

E. Davila, D. Pares, G. Cuvelier, P. Relkin. Heat-induced gelation of porcine blood plasma proteins as affected by pH. Meat Sci. 76, 216 (2007). https://doi.org/10.1016/j.meatsci.2006.11.002

P.D. Watson. Modeling the effects of proteins on pH in plasma. J. Appl. Physiol. 86, 1421 (1999). https://doi.org/10.1152/jappl.1999.86.4.1421

F. Roosen-Runge, M. Hennig, F. Zhang, R.M.J. Jacobs, M. Sztucki et al. Protein self-diffusion in crowded solutions. Proc. Natl. Acad. Sci. USA 108, 11815 (2011). https://doi.org/10.1073/pnas.1107287108

S.A. Volkova, N.N. Borovkov. The Fundamentals of Clinical Hematology (NizhGMA, 2013) (in Russian).

B. Jachimska, M. Wasilewska, Z. Adamczyk. Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir 24, 6866 (2008). https://doi.org/10.1021/la800548p

K. Baler, O.A. Martin, M.A. Carignano, G.A. Ameer, J.A. Vila et al. Electrostatic unfolding and interactions of albumin driven by pH changes: A molecular dynamics study. J. Phys. Chem. B 118, 921 (2014). https://doi.org/10.1021/jp409936v

A.L. Grebenev. Propaedeutics of Internal Diseases (Meditsina, 2001) (in Russian).

A. Michnik, K. Michalik, Z. Drzazga. DSC study of human serum albumin ageing processes in aqueous and low concentration ethanol solutions. Polish J. Env. Stud. 15, 81 (2006).

A. Bhattacharya, R. Prajapati, S. Chatterjee, T.K.Mukherjee. Concentration-dependent reversible self-oligomerization of serum albumins through intermolecular beta-sheet formation. Langmuir 30, 14894 (2014). https://doi.org/10.1021/la5034959

R.F. Atmeh, I.M. Arafa, M. Al-Khateeb. Albumin aggregates: hydrodynamic shape and physico-chemical properties. Jordan J. Chem. 2, 169 (2007).

O.V. Khorolskyi. Calculation of the effective macromolecular radii of human serum albumin from the shear viscosity data for its aqueous solutions. Ukr. J. Phys. 64, 287 (2019). https://doi.org/10.15407/ujpe64.4.287

O.V. Khorolskyi. Effective radii of macromolecules in dilute polyvinyl alcohol solutions. Ukr. J. Phys. 63, 144 (2018). https://doi.org/10.15407/ujpe63.2.144

O.V. Khorolskyi. The nature of viscosity of polyvinyl alcohol solutions in dimethyl sulfoxide and water. Ukr. J. Phys. 62, 858 (2017). https://doi.org/10.15407/ujpe62.10.0858

A. Einstein. Eine neue Bestimmung der Molekuldimensionen. Ann. Phys. 19, 289 (1906). https://doi.org/10.1002/andp.19063240204

Hydrodynamic Interaction of Particles in Suspensions, edited by A.Yu. Ishlinskii, G.G. Chernyi (Mir, 1980) (in Russian).

A.A. Guslisty, N.P. Malomuzh, A.I. Fisenko. Optimum temperature for human life activity. Ukr. J. Phys. 63, 809 (2018). https://doi.org/10.15407/ujpe63.9.809

N.P. Malomuzh, E.V. Orlov. New version of the cell method for determining the viscosity of suspensions. Kolloid Zh. 64, 802 (2002) (in Russian). https://doi.org/10.1023/A:1021502306529

T.S. Chow. Viscosities of concentrated dispersions. Phys. Rev. E 48, 1977 (1993). https://doi.org/10.1103/PhysRevE.48.1977

R. Consiglio, D.R. Baker, G. Paul, H.E. Stanley. Continuum percolation thresholds for mixtures of spheres of different sizes. Physica A 319, 49 (2003). https://doi.org/10.1016/S0378-4371(02)01501-7

D.C. Carter, J.X. Ho. Structure of serum albumin. Adv. Protein Chem. 45, 153 (1994). https://doi.org/10.1016/S0065-3233(08)60640-3

S. Curry, H.Mandelkow, P. Brick, N. Franks. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Mol. Biol. 5, 827 (1998). https://doi.org/10.1038/1869

Published
2020-03-03
How to Cite
Malomuzh, N., Bulavin, L., Gotsulskyi, V., & Guslisty, A. (2020). Characteristic Changes in the Density and Shear Viscosity of Human Blood Plasma with Varying Protein Concentration. Ukrainian Journal of Physics, 65(2), 151. https://doi.org/10.15407/ujpe65.2.151
Section
Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

1 2 > >>