Influence of Atomic Disorder on the Auger Recombination Rate in p-InGaN Alloys


  • A. V. Zinovchuk Ivan Franko State University of Zhytomyr
  • E. A. Sevost’yanov Ivan Franko State University of Zhytomyr



InGaN compounds, atomic disorder, Auger recombination, supercell


The influence of the atomic disorder on the Auger recombination rate in p-InGaN alloys has been studied. The disorder was simulated using a 4 × 4 × 4 supercell in which In and Ga atoms taken in a required stoichiometric ratio were randomly distributed over the supercell sites. A comparison between the Auger recombination rates calculated in the framework of the supercell and virtual-crystal approximations showed that a large number of allowed interband transitions induced by the atomic disorder strongly increases the Auger recombination rate in wide-band-gap p-InGaN alloys.


Y. Zhao, H. Fu, G.T. Wang, S. Nakamura. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes. Adv. Opt. Photon. 10, 246 (2018).

Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames. Auger recombination in In-GaN measured by photoluminescence. Appl. Phys. Lett. 91, 14101 (2007).

J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, C. Weisbuch. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013).

J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, M. Sabathil, N. Linder, S. Lutgen. On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. 92, 261103 (2008).

F. Bertazzi, M. Goano, E. Bellotti. Auger recombination in GaInN/GaN quantum well laser structures. Appl. Phys. Lett. 97, 231118 (2010).

F. Bertazzi, M. Goano, E. Bellotti. Numerical analysis of indirect Auger transitions in InGaN. Appl. Phys. Lett. 101, 011111 (2012).

E. Kioupakis, P. Rinke, K.T. Denaley, C.G. Van de Walle. Indirect Auger recombination as a cause of efficiency drop in nitride light-emitting diodes. Appl. Phys. Lett. 98, 161107 (2011).

E. Kioupakis, D. Steiauf, P. Rinke, K.T. Delaney, C.G. Van de Walle. First-principles calculations of indirect Auger recombination in nitride semiconductors. Phys. Rev. B 92, 035207 (2015).

A.V. Zinovchuk, A.M. Gryschuk. Alloy-assisted Auger recombination in InGaN. Opt. Quant. Electron. 50, 455 (2018).

V. Popescu, A. Zunger. Extracting E versus k effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B. 85, 085201 (2012).

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, K. Brennan. Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN. J. Appl. Phys. 88, 6467 (2000).

A.R. Tackett, M. Di Ventra. Targeting specific eigenvectors and eigenvalues of a given Hamiltonian using arbitrary selection criteria. Phys. Rev. B 66, 245104 (2002).

D.B. Laks, G.F. Neumark, S.T. Pantelides. Accurate interband-Auger-recombination rates in silicon. Phys. Rev. B 42, 5176 (1990).

G. Cappellini, R. Del Sole, L. Reining, F. Bechstedt. Model dielectric function for semiconductors. Phys. Rev. B 47, 9892 (1993).

J. Piprek, F. Romer, B. Witzigmann. On the uncertainty of the Auger recombination coefficient extracted from In-GaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett. 106, 101101 (2015).



How to Cite

Zinovchuk, A. V., & Sevost’yanov, E. A. (2020). Influence of Atomic Disorder on the Auger Recombination Rate in p-InGaN Alloys. Ukrainian Journal of Physics, 65(2), 157.



Semiconductors and dielectrics