The Construction of Relativistically Invariant Equations of Motion and the Momentum Energy Tensor for Spin-1/2 Particles with Polarizabilities in an Electromagnetic Field

  • S. A. Lukashevich Francisk Skorina Gomel State University
  • N. V. Maksimenko Francisk Skorina Gomel State University
Keywords: covariant Lagrangian, equations of motion, energy-momentum tensor

Abstract

Within the covariant Lagrangian formalism, the equations of motion for spin-1/2 particles with polarizabilities in an electromagnetic field have been obtained. We have analyzed the phenomenological tensor constant quantities as well.

References

S.J. Brodsky, J.R. Primack. The electromagnetic interaction of composite systems. Annals of Physics 52, 315 (1969). https://doi.org/10.1016/0003-4916(69)90264-4

S. Scherer, A. Yu. Korchin, J.H. Koch. Virtual Compton scattering off the nucleon at low energies. Phys. Rev. C 54, 904 (1996). https://doi.org/10.1103/PhysRevC.54.904

M.I. Levchuk, L.G. Moroz. Gyration nucleon as one of the characteristics of its electromagnetic structure. Vesti AN BSSR Ser.: fiz.-mat. nauk 1, 49 (1985).

A.J. L'vov, V.A. Petrun'kin. Dispersion theory of proton Compton scattering in the first and second resonance regions. Phys. Rev. C 55, 359 (1997). https://doi.org/10.1103/PhysRevC.55.359

M.-Th. Hutt, A.J. L'vov, A.J. Milstein, M. Schumacher. Compton scattering by nuclei. Phys. Reports 323, No. 6, 458 (2000). https://doi.org/10.1016/S0370-1573(99)00041-1

N.V. Maksimenko, L.G. Moroz. Phenomenological description polarizabilities of elementary particles in a field-theory. In: Proc. 11 Intern. School on High Energy Physics and Relativistic Nucl. Phys. Dubna JINR D2-11707, 533 (1979).

S.A. Belousova, N.V. Maksimenko. The description for spin polarizabilities based on the covariant Lagrangian. In Proc. of "OFTHEP'2000". Tver, Russia, 305 (2000), hep-ph/0009334.

N.V. Maksimenko, O.M. Deruzhkova, S.A. Lukashevich. The electromagnetic characteristics of hadrons in the covariant Lagrangian approach. In Proc. of Intern. School-Seminar "Actual Problems of Particles Physics", Gomel, 2001. JINR 2, 145 (2002).

D. Babusci, J. Jiordano, A.J. L'vov, J. Matone, A.N. Nathan. Low-energy Compton scattering of polarized photons on polarized nucleons. Phys. Rev. C 58, 1013 (1998). https://doi.org/10.1103/PhysRevC.58.1013

A. Ilyichev, S. Lukashevich, N. Maksimenko. Static polarizability vertex and its application. arXiv: hep-ph/0611327v1.

Y. Zhang, K. Savvidy. Proton Compton scattering in a unified proton ?+ model. Phys. Rev. C 88, No. 6, 064614 (2013). arXiv:1305.3847 [hep-ph] NITS-PHY-2013002. https://doi.org/10.1103/PhysRevC.88.064614

C. Itzykson, J.B. Zuber. Quantum Field Theory (McGraw-Hill, 1980).

Published
2019-09-18
How to Cite
Lukashevich, S., & Maksimenko, N. (2019). The Construction of Relativistically Invariant Equations of Motion and the Momentum Energy Tensor for Spin-1/2 Particles with Polarizabilities in an Electromagnetic Field. Ukrainian Journal of Physics, 64(8), 702. https://doi.org/10.15407/ujpe64.8.702
Section
New Trends in High-Energy Physics (Conference materials)