A Look at Multiplicity Distributions via Modified Combinants

  • M. Rybczyński Institute of Physics, Jan Kochanowski University
  • G. Wilk National Centre for Nuclear Research
  • Z. Włodarczyk Institute of Physics, Jan Kochanowski University
Keywords: multiplicity distributions, combinants, void probabilities, compound distributions

Abstract

The experimentally measured multiplicity distributions exhibit, after a closer inspection, the peculiarly enhanced void probability and the oscillatory behavior of modified combinants. We show that both these features can be used as additional sources of information, not yet fully explored, on the mechanism of multiparticle production. We provide their theoretical understanding within the class of compound distributions.

References

W. Kittel, E.A. De Wolf. Soft Multihadron Dynamics (World Scientific, 2005). https://doi.org/10.1142/5805

Ding-wei Huang. Multiplicity distribution with enhanced void probability. J. Phys. G 23, 895 (1997). https://doi.org/10.1088/0954-3899/23/8/004

S. Dutta, A.H. Chan, C.H. Oh. Mod. Void probability enhanced multiplicity distribution of produced hadrons in p-p collision at lhc energies. Phys. Lett. A 27, 1250145 (2012). https://doi.org/10.1142/S0217732312501453

G. Wilk, Z. W lodarczyk. How to retrieve additional information from the multiplicity distributions. J. Phys. G 44, 015002 (2017). https://doi.org/10.1088/0954-3899/44/1/015002

G. Wilk, Z. W lodarczyk. Some intriguing aspects of multiparticle production processes. Int. J. Mod. Phys. A 33, 1830008 (2018). https://doi.org/10.1142/S0217751X18300089

M. Rybczyn?ski, G.Wilk, Z.W lodarczyk. Intriguing feature of multiplicity distributions. Eur. Phys. J. Web Conf. 206, 03002 (2019). https://doi.org/10.1051/epjconf/201920603002

M. Rybczyn?ski, G. Wilk, Z. W lodarczyk. Intriguing properties of multiplicity distributions. Phys. Rev. D 99, 094045 (2019). https://doi.org/10.1103/PhysRevD.99.094045

S.K. Kauffmann, M. Gyulassy. Multiplicity distribution. J. Phys. A 11, 1715 (1978). https://doi.org/10.1088/0305-4470/11/9/006

J. Bartke. On the description of multiplicity distributions in multiple production processes in terms of combinants. Phys. Scripta 27, 226 (1983). https://doi.org/10.1088/0031-8949/27/4/001

A.B. Balantekin, J.E. Seger. Description of pion multiplicities using combinants. Phys. Lett. B 266, 231 (1991). https://doi.org/10.1016/0370-2693(91)91031-P

Bao-An Li. Pion multiplicity distributions and combinants in relativistic heavy ion collisions. Phys. Lett. B 300, 14 (1993). https://doi.org/10.1016/0370-2693(93)90740-9

S. Hegyi. Correlation studies in quark jets using combinants. Phys. Lett. B 463, 126 (1999). https://doi.org/10.1016/S0370-2693(99)00957-0

A.B. Balantekin. Combinant analysis of multiplicity distributions. AIP Conf. Proc. 276, 346 (1993). https://doi.org/10.1063/1.43846

A.Z. Mekjian, T. Cs?org?o, S. Hegyi. A Bose-Einstein model of particle multiplicity distributions. Nucl. Phys. A 784, 515 (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.002

J.F. Fiete Grosse-Oetringhaus, K. Reygers. Charged-particle multiplicity in proton-proton collisions. J. Phys. G 37, 083001 (2010). https://doi.org/10.1088/0954-3899/37/8/083001

P. Ghosh. Negative binomial multiplicity distribution in proton-proton collisions in limited pseudorapidity intervals at LHC up to vs = 7 TeV and the clan model. Phys. Rev. D 85, 0541017 (2012). https://doi.org/10.1103/PhysRevD.85.054017

A. Giovannini, R. Ugoccioni. Signals of new physics in global event properties in pp collisions in the TeV energy domain. Phys. Rev. D 68, 034009 (2003). https://doi.org/10.1103/PhysRevD.68.034009

I.J. Zborovsky. A three-component description of multiplicity distributions in pp collisions at the LHC. J. Phys. G 40, 055005 (2013). https://doi.org/10.1088/0954-3899/40/5/055005

I.M. Dremin, V.A. Nechitailo. Independent pair parton interactions model of hadron interactions. Phys. Rev. D 70, 034005 (2004). https://doi.org/10.1103/PhysRevD.70.034005

S.V. Chekanov, V.I. Kuvshinow. Multifractal multiplicity distribution in bunching parameter analysis. J. Phys. G 22, 601 (1996). https://doi.org/10.1088/0954-3899/22/5/007

B.E.A.Saleh, M.K. Teich. Multiplied-Poisson noise in pulse, particle, and photon detection. Proc. IEEE 70, 229 (1982). https://doi.org/10.1109/PROC.1982.12284

R. Botet, M. P loszajczak. Universal Fluctuations. The Phenomenology of Hadronic Matter, (World Scientific, 2002). https://doi.org/10.1142/4916

D. Buskulic et al. (ALEPH Collaboration). Measurements of the charged particle multiplicity distribution in restricted rapidity intervals. Z. Phys. C 69, 15 (1995). https://doi.org/10.1007/s002880050002

H.W. Ang, A.H. Chan, M. Ghaffar, Q. Leong, M. Rybczy?nski, G. Wilk, Z. W lodarczyk. Modified combinant analysis of the e+e? multiplicity distributions. arXiv:1812.088.

J. Adam et al. (ALICE Collaboration). Measurement of D-meson production versus multiplicity in p-Pb collisions at vSNN = 5.02 TeV. J. High Energy Phys. 78, 1608 (2016).

I. Zborovsky. Three-component multiplicity distribution, oscillation of combinants and properties of clans in pp collisions at the LHC. Eur. Phys. J. C 78, 816 (2018). https://doi.org/10.1140/epjc/s10052-018-6287-x

A. Biswas. Charged multiplicity distributions in e+e? annihilation and pp collision. J. Phys. G 12, 1 (1986). https://doi.org/10.1088/0305-4616/12/1/008

J.F. Grosse-Oetringhaus, K. Reygers. Charged-particle multiplicity in proton-proton collisions. J. Phys. G 37 083001 (2010). https://doi.org/10.1088/0954-3899/37/8/083001

Published
2019-09-18
How to Cite
Rybczyński, M., Wilk, G., & Włodarczyk, Z. (2019). A Look at Multiplicity Distributions via Modified Combinants. Ukrainian Journal of Physics, 64(8), 738. https://doi.org/10.15407/ujpe64.8.738
Section
New Trends in High-Energy Physics (Conference materials)