Multiparticle Fields on the Subset of Simultaneity

Authors

  • D. A. Ptashynskiy Odessa National Polytechnic University
  • T. M. Zelentsova Odessa National Polytechnic University
  • N. O. Chudak Odessa National Polytechnic University
  • K. K. Merkotan Odessa National Polytechnic University
  • O. S. Potiienko Odessa National Polytechnic University
  • V. V. Voitenko Odessa National Polytechnic University
  • O. D. Berezovskiy Odessa National Polytechnic University
  • V. V. Opyatyuk Odessa National Polytechnic University
  • O. V. Zharova Odessa National Polytechnic University
  • T. V. Yushkevich Odessa National Polytechnic University
  • I. V. Sharph Odessa National Polytechnic University
  • V. D. Rusov Odessa National Polytechnic University

DOI:

https://doi.org/10.15407/ujpe64.8.732

Keywords:

multiparticle fields, problem of simultaneity in relativistic quantum theory, confinement of quarks and gluons, Higgs mechanism, energy-momentum conservation law in hadron processes

Abstract

We propose a model describing the scattering of hadrons as bound states of their constituent quarks. We build the dynamic equations for the multiparticle fields on the subset of simultaneity, using the Lagrange method, similarly to the case of “usual” single-particle fields. We then consider the gauge fields restoring the local internal symmetry on the subset of simultaneity. Since the multiparticle fields, which describe mesons as bound states of a quark and an antiquark, are two-index tensors relative to the local gauge group, it is possible to consider a model with two different gauge fields, each one associated with its own index. Such fields would be transformed by the same laws during a local gauge transformation and satisfy the same dynamic equations, but with different boundary conditions. The dynamic equations for the multiparticle gauge fields describe such phenomena as the confinement and the asymptotic freedom of colored objects under certain boundary conditions and the spontaneous symmetry breaking under another ones. With these dynamic equations, we are able to describe the quark confinement in hadrons within a single model and their interaction during the hadron scattering through the exchange of the bound states of gluons – the glueballs.

References

H. Yukawa. On the radius of the elementary particle. Phys. Rev. 76, 300 (1949). https://doi.org/10.1103/PhysRev.76.300.2

H. Yukawa. Quantum theory of non-local fields. Part I. Free fields. Phys. Rev. 77, 219 (1950). https://doi.org/10.1103/PhysRev.77.219

H. Yukawa. Quantum theory of non-local fields. Part II. Irreducible fields and their interaction. Phys. Rev. 80, 1047 (1950). https://doi.org/10.1103/PhysRev.80.1047

P. Dirac. Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949). https://doi.org/10.1103/RevModPhys.21.392

T. Heinzl. Light cone quantization: Foundations and applications. Lect. Notes Phys. 572, 55 (2001). https://doi.org/10.1007/3-540-45114-5_2

A. Logunov, A. Tavkhelidze. Quasi-optical approach in quantum field theory. Il Nuovo Cim. Ser. 10 29, 380 (1963). https://doi.org/10.1007/BF02750359

A. Logunov, A. Tavkhelidze, I. Todorov, O. Khrustalev. Quasi-potential character of the scattering amplitude. Il Nuovo Cim. Ser. 10 30, 134 (1963). https://doi.org/10.1007/BF02750754

R. Faustov. Relativistic wavefunction and form factors of the bound system. Ann. Phys. 78, 176 (1973). https://doi.org/10.1016/0003-4916(73)90007-9

S. Tomonaga. On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Phys. 1, 27 (1946). https://doi.org/10.1143/PTP.1.27

P. Dirac, W. Fock, B. Podolsky. On quantum electrodynamics. Phys. Zs. Sowjet. 2, 468 (1932).

S. Petrat, R. Tumulka. Multi-time wave functions for quantum field theory. Ann. Phys. 345, 17 (2014). https://doi.org/10.1016/j.aop.2014.03.004

N.O. Chudak, K.K. Merkotan, D.A. Ptashynskiy et al. Internal states of hadrons in relativistic reference systems. Ukr. Fiz. Zh. 61, 1039 (2016).

E. Marx. Generalized relativistic Fock space. Int. J. Theor. Phys. 6, 359 (1972). https://doi.org/10.1007/BF01258729

H. Sazdjian. Relativistic wave equations for the dynamics of two interacting particles. Phys. Rev. D 33, 3401 (1986). https://doi.org/10.1103/PhysRevD.33.3401

S. Petrat, R. Tumulka. Multi-time equations, classical and quantum. Proc. Royal Soc. of London A: Math., Phys. Eng. Sci. 470, 1364 (2014). https://doi.org/10.1098/rspa.2013.0632

D.A. Ptashynskiy, T.M. Zelentsova, N.O. Chudak et al. Multiparticle fields on the subset of simultaneity. arXiv:1905.07233 [physics.gen-ph].

N. Chudak, M. Deliyergiyev, K. Merkotan et al. Multiparticle quantum fields. Phys. J. 2, 181 (2016).

Downloads

Published

2019-09-18

How to Cite

Ptashynskiy, D. A., Zelentsova, T. M., Chudak, N. O., Merkotan, K. K., Potiienko, O. S., Voitenko, V. V., Berezovskiy, O. D., Opyatyuk, V. V., Zharova, O. V., Yushkevich, T. V., Sharph, I. V., & Rusov, V. D. (2019). Multiparticle Fields on the Subset of Simultaneity. Ukrainian Journal of Physics, 64(8), 732. https://doi.org/10.15407/ujpe64.8.732

Issue

Section

Special Issue

Most read articles by the same author(s)