Phase Transitions and Bose–Einstein Condensation in Alpha-Nucleon Matter

Authors

  • L. M. Satarov Frankfurt Institute for Advanced Studies, National Research Center “Kurchatov Institute”
  • I. N. Mishustin Frankfurt Institute for Advanced Studies, National Research Center “Kurchatov Institute”
  • A. Motornenko Frankfurt Institute for Advanced Studies, Institut f¨ur Theoretische Physik, Goethe Universit¨at Frankfurt
  • V. Vovchenko Frankfurt Institute for Advanced Studies, Institut f¨ur Theoretische Physik, Goethe Universit¨at Frankfurt
  • M. I. Gorenstein Frankfurt Institute for Advanced Studies, Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • H. Stoecker Frankfurt Institute for Advanced Studies, Institut f¨ur Theoretische Physik, Goethe Universit¨at Frankfurt, GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH

DOI:

https://doi.org/10.15407/ujpe64.8.745

Keywords:

phase transitions, mean-field model, Bose–Einstein condensation, chemical equilibrium

Abstract

The equation of state and the phase diagram of an isospin-symmetric chemically equilibrated mixture of a particles and nucleons (N) are studied in the mean-field approximation. We use a Skyrme-like parametrization of mean-field potentials as functions of the partial densities of particles. The parameters of these potentials are chosen by fitting the known properties of pure N- and pure a-matters at zero temperature. The sensitivity of results to the choice of the aN attraction strength is investigated. The phase diagram of the a − N mixture is studied with a special attention paid to the liquid-gas phase transitions and the Bose–Einstein condensation of a particles. We have found two first-order phase transitions, stable and metastable, which differ significantly by the fractions of a’s. It is shown that the states with a condensate are metastable.

References

J.P. Bondorf. Heavy ion reactions between 30 and a few hundred MeV/nucleon. J. Phys. Colloq. 37, 5 (1976). https://doi.org/10.1051/jphyscol:1976511

J.P. Bondorf, A.S. Botvina, A.S. Illjinov, I.N. Mishustin, K. Sneppen. Statistical multifragmentation of nuclei. Phys. Rep. 257, 133 (1995). https://doi.org/10.1016/0370-1573(94)00097-M

J.M. Lattimer, F.D. Swesty. A generalized equation of state for hot, dense matter. Nucl. Phys. A 535, 331 (1991). https://doi.org/10.1016/0375-9474(91)90452-C

L.M Satarov, M.I. Gorenstein, A. Motornenko, V. Vovchenko, I.N. Mishustin, H. Stoecker. Bose-Einstein condensation and liquid-gas phase transition in strongly-interacting matter composed of a particles. J. Phys. G 44, 125102 (2017). https://doi.org/10.1088/1361-6471/aa8c5d

J.W. Clark, T.-P. Wang. Theory of a matter. Ann. Phys. 40, 127 (1966). https://doi.org/10.1016/0003-4916(66)90236-3

C.J. Horowitz, A. Schwenk. Cluster formation and the virial equation of state of low-density nuclear matter. Nucl. Phys. A 776, 55 (2006). https://doi.org/10.1016/j.nuclphysa.2006.05.009

L.M. Satarov, I.N. Mishustin, A. Motornenko, V. Vovchenko, M.I. Gorenstein, H. Stoecker. Phase transitions and Bose-Einstein condensation in alpha-nucleon matter. Phys. Rev. C 99, 024909 (2019). https://doi.org/10.1103/PhysRevC.99.024909

L.M. Satarov, M.N. Dmitriev, I.N. Mishustin. Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter. Phys. At. Nucl. 72, 1390 (2009). https://doi.org/10.1134/S1063778809080146

Downloads

Published

2019-09-18

How to Cite

Satarov, L. M., Mishustin, I. N., Motornenko, A., Vovchenko, V., Gorenstein, M. I., & Stoecker, H. (2019). Phase Transitions and Bose–Einstein Condensation in Alpha-Nucleon Matter. Ukrainian Journal of Physics, 64(8), 745. https://doi.org/10.15407/ujpe64.8.745

Issue

Section

Special Issue

Most read articles by the same author(s)