1H- and 31P-NMR Spectroscopy Study of Paramagnetic Lanthanide Coordination Compounds [LnL3 • Phen] (L = CCl3C(O)NP(O)(OCH3)2)

Authors

  • V. A. Trush Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Chair of Inorganic Chemistry
  • O. O. Litsis Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Chair of Inorganic Chemistry
  • T. Yu. Sliva Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Chair of Inorganic Chemistry
  • Ya. O. Gumenyuk National University of Life and Environmental Sciences of Ukraine, Education and Research Institute of Energetics, Automation, and Energy Efficiency, Chair of Physics
  • V. M. Amirkhanov Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Chair of Inorganic Chemistry

DOI:

https://doi.org/10.15407/ujpe64.9.855

Keywords:

lanthanide coordination compounds, carbacylamidophosphates, NMR spectroscopy, isotropic chemical shift

Abstract

A series of lanthanide coordination compounds with dimethyl-N-trichloroacetylamidophosphate CCl3C(O)N(H)P(O)(OCH3)2 (HL) [HL = CCl3C(O)N(H)P(O)(OCH3)2 is a ligand of the carbacylamidophosphate (CAPh) type], whose compositions are described by the formula [LnL3 · Phen], where Ln = La, Ce, Pr, Nd, Sm, Tb, Dy, Ho, and Er; L is the deprotonized form of HL; and Phen is 1,10-Phenantroline, has been synthesized. Acetonic solutions of HL and complexes synthesized on its basis are studied by means of 1H- and 31P-NMR spectroscopy at room temperature (298 K). Since the chemical shifts of 1H signals have the pseudocontact
origin, the isotropic shifts of 31P signals are managed to be decomposed into the contact and pseudocontact components. It is found that there are two series of complexes in the solution of [LnL3 · Phen] compounds with the same structure of the coordination sphere within each of the series Ln = (Ce, Pr, Nd, Sm) (series L1) and Ln = (Tb, Dy, Ho, Er) (series L2). The values of the constant of superfine interaction for those complexes are calculated: 0.18 MHz (series L1) and 0.13 MHz (series L2).

References

A.J. Roche, S.A. Rabinowitz, K.A. Cox. Efficient NMR enantiodiscrimination of bridge fluorinated paracyclophanes using lanthanide tris beta-diketonate complexes. Tetrahedron: Asymmetr. 24, 1382 (2013). https://doi.org/10.1016/j.tetasy.2013.09.024

S. Spiliadis, A.A. Pinkerton. Paramagnetic nuclear magnetic resonance study of the lanthanide complexes [Ln(SPR)3]; R=OMe, OiPr. Determination of phosphorus hyperfine coupling and solution structures. Inorg. Chim. Acta. 75, 125 (1983). https://doi.org/10.1016/S0020-1693(00)91198-8

A.V. Turov, S.P. Bondarenko, A.A. Tkachuk, V.P. Khilya. Study of the conformational mobility of substituted 2-methoxychalcones under the influence of lanthanide shift reagents. Zh. Org. Khim. 41, 51 (2005) (in Russian). https://doi.org/10.1007/s11178-005-0118-x

V.F. Zolin, L.G. Koreneva. Rare-Earth Probe in Chemistry and Biology (Nauka, Moscow, 1980) (in Russian).

M. Woods, D.E. Woessnerc, A.Dean Sherry. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem. Soc. Rev. 35, 500 (2006). https://doi.org/10.1039/b509907m

M.D. Organ, R.C. Brasch. Contrast enhancing agents in NMR imaging. Annu. Rep. Med. Chem. 20, 277 (1985). https://doi.org/10.1016/S0065-7743(08)61054-4

J.A. Peters, M.S. Nieuwenhuizen, A.P.G. Kieboom, D.J. Raber. Analysis of multinuclear lanthanide induced shifts. Part 5′. The coordination polyhedron of 1 : 3 lanthanide(III)-glycolate complexes in aqueous solution. J. Chem. Soc. Dalton Trans. 3, 717 (1988). https://doi.org/10.1039/DT9880000717

V.V. Skopenko, V.M. Amirkhanov, T.Yu. Sliva, I.S. Vasilchenko, E.L. Anpilova, A.D. Garnovskii. Various types of metal complexes based on chelating B-diketones and their structural analogues. Russ. Chem. Rev. 8, 737 (2004). https://doi.org/10.1070/RC2004v073n08ABEH000909

V.M. Amirkhanov, V.A. Ovchynnikov, V.A. Trush, P. Gawryszewska, L.B. Jerzykiewicz. Powerful new ligand systems: Carbacylamidophosphates (Caph) and sulfonylamidophosphates (Saph). In Ligands. Synthesis, Characterization and Role in Biotechnology (NOVA Publishers, 2014) [ISBN: 978-1631171437].

O.O. Litsis, I.O. Shatrava, V.M. Amirkhanov, V.A. Ovchynnikov, T.Yu. Sliva, S.V. Shishkina, V.V. Dyakonenko, O.V. Shishkin, V.M. Amirkhanov. New carbacylamidophosphates (CAPh) and CAPh-containing coordination compounds: structural peculiarities. Struct. Chem. 27, 341 (2016). https://doi.org/10.1007/s11224-015-0701-x

N.S. Kariaka, J.A. Rusanova, S.S. Smola, S.V. Kolotilov, K.O. Znovjyak, M. Weselski, T.Yu. Sliva, V.M. Amirkhanov. First examples of carbacylamidophosphate pentanuclear hydroxo-complexes: Synthesis, structure, luminescence and magnetic properties. Polyhedron. 106, 44 (2016). https://doi.org/10.1016/j.poly.2015.12.052

O. Litsis, V. Ovchynnikov, T. Sliva, S. Shishkina, V. Amirkhanov. Lanthanide coordination compounds with monodentate coordinated B-diketone heteroanalogue-(2,2,2-trichloro-N-(dipiperidin-1-yl-phosphoryl)acetamide: synthesis and spectral investigations. Chem. J. Moldova 13, 15 (2018). https://doi.org/10.19261/cjm.2017.466

V. Amirkhanov, A. Rauf, T.B. Hadda, V. Ovchynnikov, V. Trush, M. Saleem, M. Raza, T. Rehman, H. Zgou, U. Shaheen, T. Farghaly. Pharmacophores modeling in terms of prediction of theoretical physico-chemical properties and verification by experimental correlations of carbacylamidophosphates (CAPh) and sulfanylamidophosphates (SAPh) tested as new carbonic anhydrase inhibitors. Mini-Rev. Med. Chem. 19, 20 (2019). https://doi.org/10.2174/1389557519666190222172757

I.I. Grynyuk, S.V. Prylutska, N.S. Kariaka, T.Yu. Sliva, O.V. Moroz, D.V. Franskevych, V.M. Amirkhanov, O.P. Matyshevska, M.S. Slobodyanik. Computer prediction of biological activity of dimethyl-n-(benzoyl)amidophosphate and dimethyl-n-(phenylsulfonyl)amidophosphate, evaluation of their Cytotoxic activity against leukemia cells invitro. Ukr. Biochem. J. 87, 154 (2015). https://doi.org/10.15407/ubj87.06.154

Iu. Shatrava, V. Ovchynnikov, K. Gubina, S. Shishkina, O. Shishkin, V. Amirkhanov. Varieties in structures of Co(II), Ni(II) and Cu(II) coordination compounds based on dimethyl pyridine-2-ylcarbamoylphosphoramidate. Struct. Chem. 27, 1413 (2016). https://doi.org/10.1007/s11224-016-0761-6

S.J. Lyle, Md.M. Rahman. Complexometic titration of yttrium and lanthanoids. Talanta 10, 1177 (1963). https://doi.org/10.1016/0039-9140(63)80170-8

V.M. Amirkhanov, V.A. Trush. Properties and structure of dimethyl ester of trichloroacetyl-amidophosphoric acid. Zh. Org. Khim. 7, 1120 (1995) (in Russian).

J. Cybin'ska, J. Legendziewicz, V. Trush, R. Reisfeld, T. Saraidarov. The orange emission of single crystals and solgels based on Sm3+ chelates. J. Alloy. Compd. 451, 94 (2008). https://doi.org/10.1016/j.jallcom.2007.04.088

M. Puchalska, I. Turowska-Tyrk, V. Trush, J. Legendziewicz. Structural characteristic and luminescence properties of first known example of a pair of europium(III) complexes of phosphoroazo-derivative of B-diketone with inner and both inner and outer sphere 2,2′-bipyridine. J. Alloy. Compd. 451, 264 (2008). https://doi.org/10.1016/j.jallcom.2007.04.183

V. A. Trush, O.O. Litsis, T.Yu. Sliva, V.M. Amirkhanov. Heteroleptic lanthanide complexes with the CAPh-type ligand dimethyl-N-trichloracetylamidophosphate. Visn. Odes. Nats. Univ. Khim. 22, 62 (2017). https://doi.org/10.18524/2304-0947.2017.2(62).102214

G. Oczko, J. Legendziewicz, V. Trush, V. Amirkhanov. X-ray analysis and excited state dynamics in a new class of lanthanide mixed chelates of the type LnPhB3·Phen(Ln = Sm, Eu, Gd, Tb). New J. Chem. 27, 948 (2003). https://doi.org/10.1039/B211044J

J. Reuben, D. Fiat. Nuclear magnetic resonance studies of solutions of the rare earth ions and their complexes. J. Chem. Phys. 51, 4909 (1969). https://doi.org/10.1063/1.1671883

K.A. Gschneidner, J.-C.G. Bunzli, V.K. Pecharsky. Handbook on the Physics and Chemistry of Rare Earths, (Elsevier, 2003) [ISBN: 978-0-444-51323-6].

A.M. Funk, K.-L.N. A. Finney, P. Harvey, A.M. Kenwright, E.R. Neil, N.J. Rogers, P.K. Senanayake and D. Parker. Critical analysis of the limitations of Bleaney's theory of magnetic anisotropy in paramagnetic lanthanide coordination complexes. Chem. Sci. 6, 1655 (2015). https://doi.org/10.1039/C4SC03429E

B.B. Bleaney. Nuclear magnetic resonance shifts in solution due to lanthanide ions. J. Magn. Reson. 8, 91 (1972). https://doi.org/10.1016/0022-2364(72)90027-3

R.S. Drago, J.I. Zink, R.M. Richman, W.D. Perry. Theory of isotropic shifts in the NMR of paramagnetic materials: Part I. J. Chem. Educ. 51, 371 (1974). https://doi.org/10.1021/ed051p371

A.A. Pinkerton, W.L. Earl. A nuclear magnetic resonance investigation of bis(O,O′-diethyldithiophosphato)-complexes of the lanthanids: Separation of contact and pseudo-contact contributions to the chemical shifts. J. Chem. Soc. Dalton Trans. 3, 267 (1978). https://doi.org/10.1039/DT9780000267

L. Fusaro. An 17O NMR study of diamagnetic and paramagnetic lanthanide-tris(oxydiacetate) complexes in aqueous solution. Magn. Reson. Chem. 56, 1168 (2018). https://doi.org/10.1002/mrc.4781

K. Djanashvili, J.A. Peters. How to determine the number of inner-sphere water molecules in lanthanide(III) complexes by 17O NMR spectroscopy. A technical note. Contr. Media Mol. Imag. 2, 67 (2007). https://doi.org/10.1002/cmmi.132

Published

2019-10-11

How to Cite

Trush, V. A., Litsis, O. O., Sliva, T. Y., Gumenyuk, Y. O., & Amirkhanov, V. M. (2019). 1H- and 31P-NMR Spectroscopy Study of Paramagnetic Lanthanide Coordination Compounds [LnL3 • Phen] (L = CCl3C(O)NP(O)(OCH3)2). Ukrainian Journal of Physics, 64(9), 855. https://doi.org/10.15407/ujpe64.9.855

Issue

Section

Structure of materials

Most read articles by the same author(s)