Effect of Thermal Annealing on Thermoluminescence Glow Curves of KY3F10:Ho3+

  • N. G. Debelo Jimma University, Department of Physics, P. O. Box 378
  • S. Hailemariam Jimma University, Department of Physics, P. O. Box 378
Keywords: thermoluminescence, thermal annealing, variable heating rate method, activation energy

Abstract

The effect of thermal annealing on thermoluminescence (TL) glow curves of commercially obtained KY3F10:Ho3+ phosphor is investigated, and the result is compared with that of unannealed sample. The samples were annealed at different annealing temperatures: namely, 400, 500, and 600 C. The activation energy (trap depth), which is one of the TL kinetic parameters, is calculated for the annealed and unannealed samples using the variable heating rate (VHR) method. The results show that the thermal annealing has a clear effect on the TL intensities of the glow curves. The maxima of the TL glow curves shift toward a higher temperature region, as the annealing temperature increases. Moreover, the higher the annealing temperature, the shallower the position of the trap beneath the edge of the conduction band. The X-ray diffraction (XRD) pattern of the sample shows a monoclinic structure with unit cell dimensions (in Angstr¨om) a = 10.41, b = 6.73, c = 12.46 match with JCPDS card No. 21-1458.

References

F.O. Ogundare, L.A. Hussain, F.A. Balogun. Heating rate effects on the thermoluminescence of fluorite. Radiat. Meas. 40, 60 (2012). https://doi.org/10.1016/j.radmeas.2005.01.004

N.G. Debelo, F.B. Dejene, K.T. Roro. Thermally stimulated luminescence of Y2SiO5 :Ce3+. Int. J. Thermophys. 37, 69 (2016). https://doi.org/10.1007/s10765-016-2081-x

Vo Van Hoang. Heating rate effects in simulated liquid Al2O3. Eur. Phys. J. Appl. Phys. 33, 69 (2006). ttps://doi.org/10.1051/epjap:2005084

Y. Parganiha, V. Dubey, J. Kaur, R. Shrivastava. YAlO3 :Ce3+ powders: Synthesis, characterization, thermoluminescence and optical studies. Superlattices Microstruct. 77, 152 (2015). https://doi.org/10.1016/j.spmi.2014.11.010

N. Gemechu, T. Abebe. Structural characterization and thickness profile of pulsed laser-deposited KY3F10 :Ho3+ thin films pulsed laser deposition of thin films. Ukr. J. Phys 63, 182 (2018). https://doi.org/10.15407/ujpe63.2.182

J. Manam, S. Isaac. Preparation, characterization and thermally stimulated luminescence of ZnO nanophosphor. Ind. J. Phys. 83, 1407(2009). https://doi.org/10.1007/s12648-009-0129-5

J. Chandler, S. Sholom, S. McKeever, H. Hall. Thermoluminescence and phototransferred thermoluminescence dosimetry on mobile phone protective touch screen glass. J. Appl. Phys. 126, 074901 (2019). https://doi.org/10.1063/1.5108971

N. Debelo, T. Senbeta, B. Mesfin, F. Dejene. Synthesis and luminescence properties of Ca3Y2(Si3O9)2 : xCe3+ nanophosphor. J. Mater. Sci.: Mater. Electron. 28, 1 (2017). https://doi.org/10.1007/s10854-017-7105-1

V. Dubey, J. Kaur, S. Agrawal, N. Suryanarayana, K. Murthy. Effect of Eu3+ concentration on photoluminescence and thermoluminescence behavior of YBO3 :Eu3+ phosphor. Superlattices Microstruct. 67, 156 (2014). https://doi.org/10.1016/j.spmi.2013.12.026

C.R. Ronda. Luminescence from Theory to Applications (Wiley, 2007) [ISBN: 978-3-527-31402-7]. https://doi.org/10.1002/9783527621064

N.G. Debelo, F.B. Dejene, K.T. Roro. Pulsed laser deposited KY3F10 :Ho3+ thin films: Influence of target to substrate distance. Mater. Chem. Phys. 190, 62 (2017).

P. Seth. S. Aggarwal, S. Rao. Thermoluminescence study of rare earth ion (Dy3+) doped LiF :Mg crystals grown by EFG technique. J. Rare Earth. 30, 241 (2012). https://doi.org/10.1016/S1002-0721(12)60105-7

J.M. Kalita, M.L. Chithambo. Photo transferred thermo-luminescence and thermally-assisted optically stimulated luminescence dosimetry using a-Al2O3 :C, Mg annealed at 1200 ∘C. J. Lumin. 205, 1 (2019). https://doi.org/10.1016/j.jlumin.2018.08.085

U. Pal. Thermoluminescence properties of ZnO and ZnO:Yb nanophosphors. Appl. Phys. Lett. 89, 183118 (2006). ttps://doi.org/10.1063/1.2374866

N. Debelo, F. Dejene, K. Roro, T. Senbeta, B. Mesfin, T. Abebe, L. Mostert. Enhanced emission and improved crystallinity of KY3F10 :Ho3+ thin films grown at high deposition temperature using pulsed laser deposition technique. J. Electron. Mater. 47, 2617 (2018). https://doi.org/10.1007/s11664-018-6089-9

Published
2020-03-03
How to Cite
Debelo, N., & Hailemariam, S. (2020). Effect of Thermal Annealing on Thermoluminescence Glow Curves of KY3F10:Ho3+. Ukrainian Journal of Physics, 65(2), 174. https://doi.org/10.15407/ujpe65.2.174
Section
Structure of materials