Synthesis of Carbon Nanotubes from Graphite and Investigation of the Catalytic Activity of MWCNTs/Cr2O3–NiO with the Removal of Bismarсk Brown G Dye from Its Aqueous Solution
DOI:
https://doi.org/10.15407/ujpe64.4.276Keywords:
dyes removal, Bismarck brown G, carbon nanotubes, nanocompositeAbstract
This work describes the synthesis of carbon nanotubes from graphite by the chemical precipitation method and nanocomposites of multiwall carbon nanotubes (MWCNTs) with co-oxide nanocomposite (MWCNTs)/MO(Cr2O3–NiO). Those nanocomposites were prepared with the use of a simple evaporation and a drying process. The obtained composites were characterized, by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The activity of the prepared composites was investigated by the following removal of a Bismarck brown G dye (BBG) from the aqueous solution via photocatalytic reactions. The efficiency of the photocatalytic dye removal over the prepared composites was 91.43% after one hour of reaction under the optimal conditions, which were a mass dosage of 0.03 g, pH = 5, and a temperature of 30 ∘C.
References
T. Masciangioli, W.X. Zhang. Peer reviewed: Environmental technologies at the nanoscale. Envir. Sci. Tech. 37, 102A (2003). https://doi.org/10.1021/es0323998
E. Roduner. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006). https://doi.org/10.1039/b502142c
C. Darnault, K. Rockne, A. Stevens, G.A. Mansoori, N. Sturchio. Fate of environmental pollutants. Water Environment Res. 77, 2576 (2005). https://doi.org/10.2175/106143005X54632
G.A. Mansoori, T.R. Bastami, A. Ahmadpour, Z. Eshaghi. Environmental application of nanotechnology. Ann. Rev. Nano Res. 2, 1 (2008). https://doi.org/10.1142/9789812790248_0010
D. Grosso, F. Cagnol, G.D.A. Soler-Illia E.L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau A. Bourgeois, C. Sanchez. Fundamentals of mesostructuring through evaporation-induced self-assembly. Advanced Funct. Mater. 14 (4), 309 (2004). https://doi.org/10.1002/adfm.200305036
C.A. Furtado, U.J. Kim, H.R. Gutierrez, L. Pan, E.C. Dickey, P.C Eklund. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc. 126, 6095 (2004). https://doi.org/10.1021/ja039588a
M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J.P. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley. Band gap fluorescence from individual single-walled carbon nanotubes. Science. 593, 297 (2002).
M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J.E. Fischer D.E. Luzzi. Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon. 39, 1251 (2001). https://doi.org/10.1016/S0008-6223(00)00249-9
B.I. Yakobson, C.J. Brabec, J. Bernholc. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76, 2511 (1996). https://doi.org/10.1103/PhysRevLett.76.2511
V.K. Gupta, S. Agarwal, T.A. Saleh. Synthesis and characterization of alumina coated carbon nanotubes and their application for lead removal. J. Hazardous Mater. 185, 17 (2011). https://doi.org/10.1016/j.jhazmat.2010.08.053
S. Wang, X. Shi, G. Shao, X. Duan, X. Yang, X. Wang. Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites. J. Phys. Chem. Sol. 69, 2396 (2008). https://doi.org/10.1016/j.jpcs.2008.04.029
D.W. Lee, J.W. Seo. sp2/sp3 carbon ratio in graphite oxide with different preparation times. J. Phys. Chem. C 115, 2705 (2011). https://doi.org/10.1021/jp107906u
Y.J. Xu, Y. Zhuang, X. Fu. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orange. J. Phys. Chem. C 114, 2669 (2010). https://doi.org/10.1021/jp909855p
E.J. Mohammad, M.M Kareem, A.J. Atiyah. Removal of dye bismarck brown G by photocatalytic reaction over prepared co-oxide Cr2O3-NiO: A kinetic study. Asian J. Chem. 30, 2527 (2018). https://doi.org/10.14233/ajchem.2018.21517
C. Kao, R. Young. A Raman spectroscopic investigation of heating effects and the deformation behavior of epoxy/SWNT composites. Composites Sci. Tech. 64, 2291 (2004). https://doi.org/10.1016/j.compscitech.2004.01.019
S. Costa, E. Palen, M. Kruszynsky, A. Bachimatiuk, R. Kalenczuk. Characterization of carbon nanotubes by Raman spectroscopy. Mater. Sci.-Poland 26, 2 (2008).
D.A. Skoog, F.J. Holler, S.R. Crouch. Principles of Instrumental Analysis (Thomson Brooks/Cole, 2007).
A. Yildrim, T. Se?ckin. In situ preparation of polyether amine functionalized MWCNT nanofiller as reinforcing agents. Advances in Mater. Sci. Eng. ID 356920, 1 (2014). https://doi.org/10.1155/2014/356920
S.K. Anshul, M. Aman, R.K. Bedi, K. Subodh, A.K. Debnathc, D.K. Aswald. CNTs based improved chlorine sensor from noncovalently anchored multi-walled carbon nanotubes with hexa-decafluorinated cobalt phthalocyanines. RSC Adv. 7, 49675 (2017). https://doi.org/10.1039/C7RA08987B
K.I. Falk, B.A. Coasne, R.J.M. Pellenq. Effect of temperature on adsorption of mixtures in porous materials. Mol. Simul. 40, 45 (2014). https://doi.org/10.1080/08927022.2013.852192
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.