Optical and Electrical Properties of Tb–ZnO/SiO2 Structure in the Infrared Spectral Interval

Authors

  • O. V. Melnichuk Mykola Gogol State University of Nizhyn
  • L. Yu. Melnichuk Mykola Gogol State University of Nizhyn
  • N. O. Korsunska V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine http://orcid.org/0000-0002-4778-5074
  • L. Yu. Khomenkova V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine http://orcid.org/0000-0002-5267-5945
  • Ye. F. Venger V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.5.434

Keywords:

zinc oxide, SiO2, IR reflection, thin film, dielectric substrate, phonon, plasmon, electron concentration

Abstract

Optical and electrophysical properties of terbium-doped zinc oxide films have been studied, by using the external reflection IR spectroscopy. The films were deposited onto silicon oxide substrates with the help of the magnetron sputtering method. A theoretical analysis of the reflection spectra of the ZnO/SiO2 structure is carried out in the framework of a multioscillatory model in the spectral interval 50–1500 cm−1 and for the electrical field orientation perpendicular to the c-axis (E⊥C). The method of dispersion analysis is applied to determine the optical and electrical properties of ZnO films, as well as the oscillator strengths and damping coefficients in the ZnO film and the SiO2 substrate. The influences of the phonon and plasmon-phonon subsystems in the ZnO film on the shape of IR reflection spectra registered from the Tb–ZnO/SiO2 structure are elucidated.

References

C. Jagadish, S. Pearton. Zinc Oxide Bulk, Thin Films and Nanostructures. Processing, Properties and Applications (Elsevier, 2006).

N.O. Korsunska, I.V. Markevych, L.V. Borkovska, L.Yu. Khomenkova, L.Yu. Melnichuk, O.V. Melnichuk, Ye.F. Venger. Structural, Optical, and Electron-Phonon Properties of Doped High Energy-Gap Oxides (Nizhyn State University, 2018) (in Ukrainian).

I.V. Markevich, L.V. Borkovska, Ye.F. Venger, N.O. Korsunska, V.I. Kushnirenko, O.V. Melnichuk, L.Yu. Melnichuk, L.Yu. Khomenkova. Electrical, optical and luminescent properties of zinc oxide single crystals. Ukr. Fiz. Zh. Oglyady 13, 57 (2018) (in Ukrainian).

A.V. Rakov. Spectrophotometry of Thin-Film Semiconductor Structures (Sovetskoe Radio, 1975) (in Russian).

Ye.F. Venger, O.V. Melnichuk, Yu.A. Pasechnyk. Spectroscopy of Residual Rays (Naukova Dumka, 2001) (in Ukrainian).

E.A. Vinogradov, I.A. Dorofeev. Thermally Stimulated Electromagnetic Fields of Solids (Fizmatlit, 2010) (in Russian).

O. Melnichuk, L. Melnichuk, B. Tsykaniuk, Z. Tsybrii, P. Lytvyn, C. Guillaume, X. Portier, V. Strelchuk, Ye. Venger, L. Khomenkova, N. Korsunska. Investigation of undoped and Tb-doped ZnO films on Al2O3 substrate by infrared reflection method. Thin Solid Films 673, 136 (2019). https://doi.org/10.1016/j.tsf.2019.01.028

N. Korsunska, L. Borkovska, Yu. Polischuk, O. Kolomys, P. Lytvyn, I. Markevich, V. Strelchuk, V. Kladko, O. Melnichuk, L. Melnichuk, L. Khomenkova, C. Guillaume, X. Portier. Photoluminescence, conductivity and structural study of terbium-doped ZnO films grown on different substrates. Mater. Sci. Semicond. Process. 94, 51 (2019). https://doi.org/10.1016/j.mssp.2019.01.041

O.V. Melnichuk. Research of thin ZnO films on the SiC 6H surface using the IR spectroscopy method. Opto?elektron. Poluprovodn. Tekhn. 33, 146 (1998) (in Ukrainian).

A.V. Melnichuk. Optical and electrophysical properties of thin doped ZnO/SiC 6H films from the IR reflection spectra. Ukr. Fiz. Zh. 43, 1310 (1998).

E.F. Venger, L.Yu. Melnichuk, O.V. Melnichuk, T.V. Shovkoplyas. Guided-wave polaritons in ZnO/6H-SiC structures. In Proceedings of 16th International Conference on Spectroscopy of Molecules and Crystals, Kyiv (2003), p. 126. https://doi.org/10.1117/12.569812

E.F. Venger, A.V. Melnichuk, Ju.A. Pasechnik, E.I. Sukhenko. IR spectroscopy studies of the zinc oxide on sapphire structure. Ukr. Fiz. Zh. 42, 1357 (1997).

Yu.I. Ukhanov. Optical Properties of Semiconductors (Nauka, 1977) (in Russian).

E.F. Venger, L.Yu. Melnichuk, A.V. Melnichuk, T.V. Semikina. IR spectroscopic study of thin ZnO films grown using the atomic layer deposition method. Ukr. Fiz. Zh. 61, 1059 (2016) (in Ukrainian).

? U. ? Ozg?ur, Ya. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Do?gan, V. Avrutin, S.-J. Cho, H. Morko?c. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

Z.L. Wang. Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, R829 (2004). https://doi.org/10.1088/0953-8984/16/25/R01

K.V. Shalimova, Physics of Semiconductors (Energoatomizdat, 1985) (in Russian).

X. Gu, M.A. Reshchikov, A. Teke, D. Johnstone, H. Morko?c. GaN epitaxy on thermally treated c-plane bulk ZnO substrates with O and Zn faces. Appl. Phys. Lett. 84, 2268 (2004). https://doi.org/10.1063/1.1690469

F. Hamdani. Microstructure and optical properties of epitaxial GaN on ZnO (0001) grown by reactive molecular beam epitaxy. J. Appl. Phys. 83, 983 (1998). https://doi.org/10.1063/1.366786

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287 (5455), 1019 (2000). https://doi.org/10.1126/science.287.5455.1019

S.J. Pearton, C.R. Abernathy, G.T. Thaler, R.M. Frazier, D.P. Norton, F. Ren, Y.D. Park, J.M. Zavada, I.A. Buyanova, W.M. Chen. Wide bandgap GaN-based semiconductors for spintronics. J. Phys.: Condens. Matter 16, R209 (2004). https://doi.org/10.1088/0953-8984/16/7/R03

S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner. Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59 (2004). https://doi.org/10.1088/0268-1242/19/10/R01

Z.B. Fang, Y.S Tan, H.X. Gong, C.M. Zhen, Z.W. He, Y.Y. Wang. Transparent conductive Tb-doped ZnO films prepared by rf reactive magnetron sputtering. Mater. Lett. 59, 2611 (2005). https://doi.org/10.1016/j.matlet.2005.02.062

A. Elfakir, A. Douayar, R. Diaz, I. Chaki, P. Prieto, M. Loghmarti, A. Belayachi, M. Abd-Lefdil. Elaboration and characterization of sprayed Tb-doped Zno thin films. Sensors Transduc. 27, 161 (2014).

E.F. Venger, A.V. Melnichuk, L.Ju. Melnichuk, Ju.A. Pasechnik. Anisotropy of the ZnO single crystal reflectivity in the region of residual rays. Phys. Status Solidi B 188, 823 (1995). https://doi.org/10.1002/pssb.2221880226

C.T. Kirk. Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Phys. Rev. B 38 , 1255 (1988). https://doi.org/10.1103/PhysRevB.38.1255

F. Pechar. Infrared reflection spectra of selected modifications of SiO2 and Al2O3. Cryst. Res. Technol. 20, 239 (1985). https://doi.org/10.1002/crat.2170200221

S.D. Ross. Inorganic Infrared and Raman Spectra (McGraw-Hill, 1972).

H.J. Lozykowski. Kinetics of luminescence of isoelectronic rare-earth ions in III-V semiconductors. Phys. Rev. B 48, 17758 (1993). https://doi.org/10.1103/PhysRevB.48.17758

P.P. Pal, J. Manam. Effect of Li+ co-doping on the luminescence properties of ZnO:Tb3+ nanophosphors. Nanosyst. Phys. Chem. Math. 4, 395 (2013).

Published

2019-06-18

How to Cite

Melnichuk, O. V., Melnichuk, L. Y., Korsunska, N. O., Khomenkova, L. Y., & Venger, Y. F. (2019). Optical and Electrical Properties of Tb–ZnO/SiO2 Structure in the Infrared Spectral Interval. Ukrainian Journal of Physics, 64(5), 434. https://doi.org/10.15407/ujpe64.5.434

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)