Quantum Mechanics Interpretation on Planck Scale

  • I. Licata ISEM, Institute for Scientific Methodology, School of Advanced International Studies on Theoretical and Non Linear Methodologies of Physics, International Institute for Applicable Mathematics & Information Sciences (IIAMIS), B.M. Birla Science Centre
Keywords: quantum mechanics interpretation, Planck scale, ‘t Hooft equivalence class, Winterberg plasma, non-locality

Abstract

In the last years, many different primeval quantization theories on the Planck scale have been developed. Their goal is to provide a vacuum model able to ground the research beyond the Standard Model. Despite their goal is quite ambitious and aims toward particle physics, a necessary and notable consequence is we can read Quantum Mechanics from an emergent viewpoint. Different hypotheses on elementary cells are possible. We will focus here on the conceptual features of G. ’t Hooft and F.Winterberg theories with a special attention for the emerging of non-local correlations. These theories define a new style in the interpretation of Quantum Mechanics.

References

J.S. Bell. On the Einstein Podolsky Rosen Paradox. Physics 1, 195 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

G. Ghirardi, R. Romano. Is a description deeper than the quantum one possible? Phys. Scr. T 163, 014028 (2014). https://doi.org/10.1088/0031-8949/2014/T163/014028

G. 't Hooft. Dimensional Reduction in Quantum Gravity. arXiv:gr-qc/9310026 (1993).

Y.J. Ng, H. Van Dam. Space time foam, holographic principle, and black hole quantum computer. Int. J. Mod. Phys. A 20, 1328 (2005). https://doi.org/10.1142/S0217751X05024237

I. Licata, D. Fiscaletti. Bohm trajectories and Feynman paths in light of quantum entropy. Act. Phys. Pol. B 45 (4), 885 (2014). https://doi.org/10.5506/APhysPolB.45.885

E.R. Caianello. Quantum systems and other physics as systems theory. Riv. N. Cim. 15, 4 (1992).

https://doi.org/10.1007/BF02743060

H.J. Treder, H.H. von Borzeszkowski. The Meaning of Quantum Gravity (Reidel, 1988). https://doi.org/10.1007/978-94-009-3893-9

J.A. Wheeler. Information, physics, quantum: The search for links. In: W.H. Zurek (Ed.), Complexity, Entropy, and the Physics of Information (Addison-Wesley, 1990).

I. Licata, A. Sakaji(Eds.), Physics of Emergence and Organization (World Scientific, 2008). https://doi.org/10.1142/6692

J. Busemeyer, P. Bruza. Quantum Models of Cognition and Decision (Cambridge Univ. Press, 2012).

A.I. Khrennikov. Ubiquitous Quantum Structures: From Psychology to Finance (Springer, 2010). https://doi.org/10.1007/978-3-642-05101-2

K. Kitto. A contextualised general systems theory. Systems 2, 541 (2014). https://doi.org/10.3390/systems2040541

L. Gabora, D. Aerts. Contextualizing concepts using a mathematical generalization of the quantum formalism. Jour. Exp. Theor. Artificial Intelligence 14 (4), 327 (2002). https://doi.org/10.1080/09528130210162253

I. Licata. General system theory, like-quantum semantics and fuzzy sets. In: G. Minati, E. Pessa, M. Abram (Eds.), Systemics of Emergence. Research and Development (Springer, 2006).

H. Atmanspacher. Contextual emergence from physics to cognitive neuroscience. Jour. Conscious. Stud. 14, 18 (2007).

N.A. Baas, C. Emmeche. On emergence and explanation. Intellectica 25, 67 (1997). https://doi.org/10.3406/intel.1997.1558

D. Bohm, B.J. Hiley. The Undivided Universe: An Ontological Interpretation of Quantum Theory (Routledge, 1993).

I. Licata, D. Fiscaletti. Quantum Potential: Physics, Geometry and Algebra (Springer, 2014). https://doi.org/10.1007/978-3-319-00333-7

H. Atmanspacher, H. R¨omer, H. Walach. Weak quantum theory: complementarity and entanglement in physics and beyond. Found. Phys. 32 (3), 379 (2002). https://doi.org/10.1023/A:1014809312397

H. Atmanspacher, P. bein Graben, T. Filk. Can classical epistemic states be entangled? D. Song, M. Melucci, I. Frommholz, P. Zhang, L. Wang, S. Arafat (Eds.) Quantum Interaction (Springer, 2011). https://doi.org/10.1007/978-3-642-24971-6_11

F. Heylighen. Classical and non-classical representations in physics I. Cybernetics and Systems 21, 423 (1990). https://doi.org/10.1080/01969729008902251

S.B. Kuksin, A.I. Neishtadt. On quantum averaging, quantum KAM, and quantum diffusion. Russ. Math. Survey 68 (2), 335 (2013). https://doi.org/10.1070/RM2013v068n02ABEH004831

W.C. McHarris. Chaos and the quantum: How nonlinear effects can explain certain quantum paradoxes. Jour. Phys.: Conf. Ser. 306, 012050 (2011). https://doi.org/10.1088/1742-6596/306/1/012050

W. Xiao-Qian, M. Jian, Z. Xi-He, W. Xiao-Guang. Chaos and quantum Fisher information in the quantum kicked top. Chin. Phys. B 20 (5), 050510 (2011). https://doi.org/10.1088/1674-1056/20/5/050510

G. Resconi, I. Licata, D. Fiscaletti. Unification of quantum and gravity by non classical information entropy space. Entropy 15 (9), 3602 (2013). https://doi.org/10.3390/e15093602

I. Licata, D. Fiscaletti. Weyl geometries, Fisher information and quantum entropy in quantum mechanics. Int. J. Theor. Phys. 51 (11), 3587 (2012). https://doi.org/10.1007/s10773-012-1245-0

I. Licata. Why the collective behavior of classic neurons is so well approximated by a quantum potential? Adv. Sc., Eng. Med. 6, 1 (2014). https://doi.org/10.1166/asem.2014.1549

G. 't Hooft. Equivalence relations between deterministic and quantum mechanical systems. J. Stat. Phys. 53, 323 (1988). https://doi.org/10.1007/BF01011560

G. 't Hooft. How a wave function can collapse without violating Schr' 'odinger's equation, and how to understand Born's rule. arXiv: 1112.1811 [quant-ph] (2012).

G. 't Hooft. The fate of the quantum. arXiv:1308.1007 [quant-ph] (2013).

G. 't Hooft. The cellular automaton interpretation of quantum mechanics. A view on the quantum nature of our Universe, compulsory or impossible? ArXiv:1405.1548 [quant-ph] (2014).

S. Wolfram. A New Kind of Science (Wolfram Media, 2002).

G. t' Hooft. Does God play dice? Phys. World (December, 2005). https://doi.org/10.1088/2058-7058/18/12/29

G.'t Hooft. Quantum mechanics from classical logic. J. Phys.: Conf. Ser. 361, 012024 (2012). https://doi.org/10.1088/1742-6596/361/1/012024

X.F. Liu, C.P. Sun, Consequences of 't Hooft's equivalence class theory and symmetry by coarse graining. J. Math. Phys. 42 (8), 3665 (2001). https://doi.org/10.1063/1.1380250

M. Blasone, P. Jizba, G. Vitiello. Dissipation and quantization. Phys. Lett. A 286 (3/4), 205 (2001). https://doi.org/10.1016/S0375-9601(01)00474-1

M. Blasone, P. Jizba, H. Kleinert. 't Hooft's quantum determinism - path integral viewpoint. Braz. J. Phys. 35 (2B), 497 (2005). https://doi.org/10.1590/S0103-97332005000300022

H.T. Elze. Deterministic models of quantum fields. J. Phys.: Conf. Ser. 33, 399 (2006). https://doi.org/10.1088/1742-6596/33/1/049

P. Jizba, F. Scardigli, M. Blasone, G. Vitiello. 't Hooft quantization for interacting systems. J. Phys.: Conf. Ser. 343, 012110 (2012). https://doi.org/10.1088/1742-6596/343/1/012110

R. Gambini, J. Pullin. Holography from loop quantum gravity. Int. J. Mod. Phys. D 17 (3/4), 545 (2008). https://doi.org/10.1142/S0218271808012231

J.N. Ng. Spacetime foam: from entropy and holography to infinite statistics and non-locality. Entropy 10, 441 (2008). https://doi.org/10.3390/e10040441

J. Magueijo, L. Smolin. Gravity's rainbow. Class. Quant. Grav. 21 (7), 1725 (2004). https://doi.org/10.1088/0264-9381/21/7/001

G.'t Hooft. The mathematical basis for deterministic quantum mechanics. J. Phys. Conf. Ser. 67, 012015 (2007). https://doi.org/10.1088/1742-6596/67/1/012015

T.H. Elze. Note on the existence theorem in "emergent quantum mechanics and emergent symmetries". J. Phys. A: Math. Theor. 41, 304020 (2008). https://doi.org/10.1088/1751-8113/41/30/304020

D. Dolce. Elementary spacetime cycles. EPL 102 (3), 31002 (2013). https://doi.org/10.1209/0295-5075/102/31002

A. Zeilinger. Dance of the Photons: From Einstein to Quantum Teleportation (Farrar, Straus, and Giroux, 2010).

J.A. Larsson. Loopholes in Bell inequality tests of local realism. J. Phys. A: Math. Theor. 47, 424003 (2014). https://doi.org/10.1088/1751-8113/47/42/424003

W. Heisenberg. Introduction to the Unified Field Theory of Elementary Particles (Interscience, 1966).

O. Freire. The Quantum Dissidents. Rebuilding the Foundations of Quantum Mechanics (1950-1990) (Springer, 2015).

G. Amelino-Camelia. Doubly-special relativity: facts, myths and some key open issues. Symmetry 2, 230 (2010). https://doi.org/10.3390/sym2010230

F. Winterberg. Low energy consequences of high-energy quantum chaos. Int. J. Theor. Phys. 31 (8), 1375 (1992). https://doi.org/10.1007/BF00673971

F. Winterberg. Physical continuum and the problem of a finitistic quantum field theory. Int. J. Theor. Phys. 32 (2), 261 (1993). https://doi.org/10.1007/BF00673716

F. Winterberg. Hierarchical order of Galilei and Lorentz invariance in the structure of matter. Int. J. Theor. Phys. 32 (9), 1549 (1993). https://doi.org/10.1007/BF00672855

F. Winterberg. Equivalence and gauge in the Planck-scale aether model. Int. J. Theor. Phys. 34 (2), 265 (1995). https://doi.org/10.1007/BF00672806

F.Winterberg. Derivation of quantum mechanics from the Boltzmann equation for the Planck aether. Int. J. Theor. Phys. 34 (1), 2145 (1995). https://doi.org/10.1007/BF00673076

F. Winterberg. Conjectured breaking of the superluminal quantum correlations by turbulent fluctuations of the zero point vacuum field. Z. Naturforsch. 53a, 659 (1998). https://doi.org/10.1515/zna-1998-0803

F. Winterberg. Planck mass plasma vacuum conjecture. Z. Naturforsch 58a, 231 (2003). https://doi.org/10.1515/zna-2003-0410

F. Winterberg. Relativistic quantum mechanics as a consequence of the Planck mass plasma conjecture. Int. J. Theor. Phys. 46 (12), 3294 (2007). https://doi.org/10.1007/s10773-007-9449-4

L. Janossy. A new approach to the theory of relativity. III. Problem of the ether. Found. Phys. 2 (1), 9 (1972). https://doi.org/10.1007/BF00708615

L. Kostro. The physical meaning of Albert Einstein's relativistic ether concept. In: Frontiers of Fundamental Physics. Edited by F. Barone, F. Selleri (Springer, 1994), pp. 193-201. https://doi.org/10.1007/978-1-4615-2560-8_22

D. Meschini, M. Letho. Is empty spacetime a physical thing? Found. Phys. 36 (8), 1193 (2006). https://doi.org/10.1007/s10701-006-9058-8

H. Bondi. Negative mass in general relativity. Rev. Mod. Phys. 29 (3), 423 (1957). https://doi.org/10.1103/RevModPhys.29.423

W.B. Bonnor. Negative mass in general relativity. General Relativity and Gravitation 21 (11), 1143 (1989). https://doi.org/10.1007/BF00763458

A.D. Sakharov. Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. - Doklady 12, 1040 (1968)].

B.L. Hu. General Relativity as geometro-hydrodynamics, arXiv:gr-qc/9607070 (1996).

A.D. Sakharov. Cosmological model of the Universe with a time vector inversion. JETP Lett. 52, 349 (1980).

L. Marochnik, D. Usikov. Inflation and CMB anisotropy from quantum metric fluctuations. Grav. Cosm. 21 (2), 118 (2015). https://doi.org/10.1134/S0202289315020061

J. Pecina-Cruz. Time reversal induces negative mass and charge conjugation: On the physical interpretation of the irreducible unitary representations of negative mass and energy of the full poincare group. arXiv:hep-ph/0505188 (2005).

J. Belletˆete, M. Paranjape. On negative mass. Int. J. Mod. Phys. D 22, 1341017 (2013). https://doi.org/10.1142/S0218271813410174

M. Saoussen, M. Paranjape. Negative mass bubbles in de Sitter spacetime. Phys. Rev. D 90, 101502 (2014). https://doi.org/10.1103/PhysRevD.90.101502

L. Chiatti, I. Licata. Relativity with respect to measurement: Collapse and quantum events from fock to cramer. Systems 2 (4), 576 (2014). https://doi.org/10.3390/systems2040576

D. Hestenes. The zitterbewegung interpretation of quantum mechanics. Found. Phys. 20 (10), 1213 (1990). https://doi.org/10.1007/BF01889466

L. de la Pena, A.M. Cetto, A. Valdes-Hernandez. The Emerging Quantum. The Physics behind Quantum Mechanics (Springer, 2015). https://doi.org/10.1007/978-3-319-07893-9

M.P. Davidson. A generalization of the Fenyes-Nelson stochastic model of quantum mechanics. Lett. Math. Phys. 3, 271 (1979). https://doi.org/10.1007/BF01821846

L. Nottale. Generalized quantum potentials. Jour. Phys. A: Math. Theor. 42 (27), 275306 (2009). https://doi.org/10.1088/1751-8113/42/27/275306

E. Di Casola, S. Liberati, S. Sonego. Between quantum and classical gravity: Is there a mesoscopic spacetime? Found. Phys. 45 (2), 171 (2015). https://doi.org/10.1007/s10701-014-9859-0

B.L. Hu. Can spacetime be a condensate? Int. J. Theor. Phys. 44 (10), 1785 (2005). https://doi.org/10.1007/s10773-005-8895-0

M. Consoli, M. Probing the vacuum of particle physics with precise laser interferometry. Found. Phys. 45 (1), 22 (2015). https://doi.org/10.1007/s10701-014-9849-2

A.O. Barvinsky. Aspects of nonlocality in quantum field theory, quantum gravity and cosmology. arXiv:1408.6112 [hep-th] (2014).

P.C.W. Davies. Quantum vacuum noise in physics and cosmology. Chaos 11 (3), 539 (2001). https://doi.org/10.1063/1.1378796

E. Gkioulekas. Winterberg's conjectured breaking of the superluminal quantum correlations over large distances. Int. J. Theor. Phys. 47 (5), 1195 (2008). https://doi.org/10.1007/s10773-007-9550-8

G. 't Hooft. How a wave function can collapse without violating Schr' 'odinger's equation, and how to understand Born's rule. arXiv:1112.1811 [quant-ph] (2011).

F. Winterberg. Wave function collapse as a real physical phenomenon caused by vacuum fluctuations near the Planck scale. Z. Naturforsch 46a, 746 (1991). https://doi.org/10.1515/zna-1991-0903

W. Heisenberg. The Physical Principles of the Quantum Theory (Dover, 1998).

I. Licata, L. Chiatti. Timeless approach to quantum jumps. Quanta 4, 1 (2015). https://doi.org/10.12743/quanta.v4i1.31

M. Silberstein, W.M. Stuckey, T. McDevitt. Being, becoming and the undivided universe: A dialogue between relational blockworld and the implicate order concerning the unification of relativity and quantum theory. Found. Phys. 43 (4), 502 (2013). https://doi.org/10.1007/s10701-012-9653-9

R. Kastner. The Transactional Interpretation of Quantum Mechanics (Cambridge Univ. Press, 2013). https://doi.org/10.1017/CBO9780511675768

A. Suarez, P. Adams (eds) Is Science Compatible with Free Will? Exploring Free Will and Consciousness in the Light of Quantum Physics and Neuroscience (Springer, 2013).

A. Suarez. Empty waves, many worlds, parallel lives, and nonlocal decision at detection. arXiv:1204.1732 [quant-ph] (2012).

G.'t Hooft. The free-will postulate in quantum mechanics. arXiv:quant-ph/0701097 (2007).

F. Winterberg. Teichm¨uller space interpretation of quantum mechanics. Ann. Fond. Louis de Broglie 38, 129 (2013).

L. Maldacena, L. Susskind. Cool horizons for entangled black holes. Fortschr. Phys. 61, 781 (2013). https://doi.org/10.1002/prop.201300020

J.B. Hartle, S.W. Hawking. Wave function of the Universe. Phys. Rev. D 28, 2960-2975 (1983). https://doi.org/10.1103/PhysRevD.28.2960

I. Licata. A Note on the origin of time in archaic universe. NeuroQuant. 12 (1), 126 (2014). https://doi.org/10.14704/nq.2014.12.1.718

F. Feleppa, I. Licata, C. Corda. Hartle-Hawking boundary conditions as nucleation by de Sitter vacuum. Phys. Dark. Un. 26, 100381 (2019). https://doi.org/10.1016/j.dark.2019.100381

M. van Raamsdonk. Building up spacetime with quantum entanglement. Gen. Rel. Grav. 42, 2323 (2010). https://doi.org/10.1007/s10714-010-1034-0

F. Markopoulou. Space does not exist, so time can. arXiv:0909.1861 [gr-qc] (2008).

T.P. Singh. Space-time from collapse of the wave-function. Z. Naturforsch. A 74, 147 (2019). https://doi.org/10.1515/zna-2018-0477

L. Chiatti, I. Licata. Particle model from quantum foundations. Quantum Stud.: Math. Found. 4 (2), 181 (2017). https://doi.org/10.1007/s40509-016-0094-6

I. Licata, L. Chiatti. Event-based quantum mechanics: A context for the emergence of classical information. Symmetry 11 (2), 181 (2019). https://doi.org/10.3390/sym11020181

X. Dong, E. Silverstein, G. Torroba. De Sitter holography and entanglement entropy. J. High Energ. Phys. 7, 50 (2018). https://doi.org/10.1007/JHEP07(2018)050

T. Vistarini. Holographic space and time: Emergent in what sense? Studies Hist. Phil. Mod. Phys. 59, 126-135 (2017). https://doi.org/10.1016/j.shpsb.2016.07.002

Published
2020-02-03
How to Cite
Licata, I. (2020). Quantum Mechanics Interpretation on Planck Scale. Ukrainian Journal of Physics, 65(1), 17. https://doi.org/10.15407/ujpe65.1.17
Section
General physics