Influence of Laser Light on the Formation and Properties of Silicon Nanocrystals in a-Si/Sn Layered Structures

Authors

  • V. B. Neimash Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. S. Nikolenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Strelchuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • P. Ye. Shepelyavyi V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • P. M. Litvinchuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Melnyk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • I. V. Olkhovyk Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.6.522

Keywords:

amorphous silicon, nanocrystals, crystallization, tin, laser

Abstract

The influence of the laser light intensity and the temperature on the tin-induced crystallization of amorphous silicon has been studied using the Raman screening and optical microscopy methods. The existence of non-thermal mechanisms giving rise to the influence of laser light on the formation of silicon nanocrystals and their Raman spectra is demonstrated experimentally. The photoionization of silicon and the electron-phonon interaction are considered as possible origins of the detected effects. The prospects of their application in new technologies for producing nano-silicon films used in solar cells are discussed.

References

M.C. Beard, J.M. Luther, A.J. Nozik. The promise and challenge of nanostructured solar cells. Nat. Nano 9, 951 (2014). https://doi.org/10.1038/nnano.2014.292

Z.I. Alferov, V.M. Andreev, V.D. Rumyantsev. Solar photovoltaics: Trends and prospects. Semiconductors 38, 899 (2004). https://doi.org/10.1134/1.1787110

B. Yan, G. Yue, X. Xu, J. Yang, S. Guha. High efficiency amorphous and nanocryistalline sillicon solar cells. Phys. Status Solidi A 207, 671 (2010). https://doi.org/10.1002/pssa.200982886

N.S. Lewis. Toward cost-effective solar energy use. Science 315, 798 (2007). https://doi.org/10.1126/science.1137014

R. Sondergaard, M. H?osel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs. Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 36 (2012). https://doi.org/10.1016/S1369-7021(12)70019-6

M. Birkholz, B. Selle, E. Conrad, K. Lips, W. Fuhs. Evolution of structure in thin microcrystalline silicon films grown by electron-cyclotron resonance chemical vapor deposition. J. Appl. Phys 88, 4376 (2000). https://doi.org/10.1063/1.1289783

B. Rech, T. Roschek, J. M?uller, S. Wieder, H. Wagner. Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56 MHz) plasma excitation frequencies. Sol. Energy Mater. Sol. Cells 66, 267 (2001). https://doi.org/10.1016/S0927-0248(00)00183-5

M.K. van Veen, C.H.M. van derWerf, R.E.I. Schropp. Tandem solar cells deposited using hot-wire chemical vapor deposition, J. Non. Cryst. Solids 338-340, 655 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.03.071

Y. Mai, S. Klein, R. Carius, H. Stiebig, L. Houben, X. Geng, F. Finger. Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. J. Non-Cryst. Solids 352, 1859 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.11.116

H. Li, R.H. Franken, R.L. Stolk, C.H.M. van der Werf, J.K. Rath, R.E.I. Schropp. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique, J. Non-Cryst. Solids 354, 2087 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.046

R. Amrani, F. Pichot, L. Chahed, Y. Cuminal. Amorphous-nanocrystalline transition in silicon thin films obtained by argon diluted silane PECVD, Cryst. Struct. Theor. Appl. 1, 57 (2012). https://doi.org/10.4236/csta.2012.13011

G. Fugallo, A. Mattoni. Thermally induced recrystallization of textured hydrogenated nanocrystalline silicon. Phys. Rev. B 89, 045301 (2014). https://doi.org/10.1103/PhysRevB.89.045301

O. Nast, A.J. Hartmann. Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon. J. Appl. Phys. 88, 716 (2000). https://doi.org/10.1063/1.373727

M. Jeon, C. Jeong, K. Kamisako. Tin induced crystallisation of hydrogenated amorphous silicon thin films. Mater. Sci. Technol. 26, 875 (2010). https://doi.org/10.1179/026708309X12454008169500

M.A. Mohiddon, M.G. Krishna. Growth and optical properties of Sn-Si nanocomposite thin films. J. Mater. Sci. 47, 6972 (2012). https://doi.org/10.1007/s10853-012-6647-0

D. Van Gestel, I. Gordon, J. Poortmans. Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective. Sol. Energy Mater. Sol. Cells 119, 261 (2013). https://doi.org/10.1016/j.solmat.2013.08.014

A. Mohiddon, G. Krishna. Metal induced crystallization. In Crystallization - Science and Technology. Edited by A. Marcello (InTech, 2012), p. 461. https://doi.org/10.5772/50064

V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Y. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, V.V. Strelchuk. The effect of Sn impurity on the optical and structural properties of thin silicon films. Semiconductors 45, 1281 (2011). https://doi.org/10.1134/S1063782611100253

V.B. Neimash, V.M. Poroshin, A.M. Kabaldin, V.O. Yukhymchuk, P.E. Shepelyavyi, V.A. Makara, S.Y. Larkin. Microstructure of thin Si-Sn composite films. Ukr. J. Phys. 58, 865 (2013). https://doi.org/10.15407/ujpe58.09.0865

V. Neimash, V. Poroshin, P. Shepeliavyi, V. Yukhymchuk, V. Melnyk, A. Kuzmich, V. Makara, A.O. Goushcha. Tin induced a-Si crystallization in thin films of Si-Sn alloys. J. Appl. Phys. 114, 213104 (2013). https://doi.org/10.1063/1.4837661

V.B. Neimash, A.O. Goushcha, P.E. Shepeliavyi, V.O. Yukhymchuk, V.A. Dan'ko, V. Melnyk, A. Kuzmich. Mechanism of tin-induced crystallization in amorphous silicon. Ukr. J. Phys. 59, 1168 (2014).

V.B. Neimash, A.O. Goushcha, P.Y. Shepeliavyi, V.O Yuhymchuk, V.V. Melnyk, A.G. Kuzmich. Self-sustained cyclic tin induced crystallization of amorphous silicon. J. Mater. Res. 30, 3116 (2015). https://doi.org/10.1557/jmr.2015.251

V. Neimash, P. Shepelyavyi, G. Dovbeshko, A. Goushcha, M. Isaiev, V. Melnyk, A.G.Kuzmich. Nanocrystals growth control during laser annealing of Sn:(a-Si) composites. J. Nanomater. 2016, 7920238 (2016). https://doi.org/10.1155/2016/7920238

V.B. Neimash, A.O. Goushcha, L.L. Fedorenko, P.Ye. Shepelyavyi, V.V. Strelchuk, A.S. Nikolenko, M.V. Isaiev, A.G. Kuzmich. Role of laser power, wavelength, and pulse duration in laser assisted tin-induced crystallization of amorphous silicon. J. Nanomater. 2018, 1243685 (2018). https://doi.org/10.1155/2018/1243685

H. Richter, Z.P. Wang, L. Ley. The one phonon Raman spectrum in microcrystalline silicon, Solid State Commun. 39, 625 (1981). https://doi.org/10.1016/0038-1098(81)90337-9

I.H. Campbell, P.M. Fauchet. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986). https://doi.org/10.1016/0038-1098(86)90513-2

T.R. Hart, R.L. Aggarwal, B. Lax. Temperature dependence of Raman scattering in silicon. Phys. Rev. B 1, 638 (1970). https://doi.org/10.1103/PhysRevB.1.638

R. Tsu, J.G. Hernandez. Temperature dependence of silicon Raman lines. Appl. Phys. Lett. 41, 1016 (1982). https://doi.org/10.1063/1.93394

A.S. Nikolenko. Temperature dependence of Raman spectra of silicon nanocrystals in oxide matrix. Ukr. J. Phys. 58, 980 (2013). https://doi.org/10.15407/ujpe58.10.0980

B.P. Falcao, J.P. Leitao, M.R. Correia, M.R. Soares, H. Wiggers, A. Cantarero, R.N. Pereira. Light-induced nonthermal population of optical phonons in nanocrystals. Phys. Rev. B 95, 115439 (2017). https://doi.org/10.1103/PhysRevB.95.115439

Published

2019-08-02

How to Cite

Neimash, V. B., Nikolenko, A. S., Strelchuk, V. V., Shepelyavyi, P. Y., Litvinchuk, P. M., Melnyk, V. V., & Olkhovyk, I. V. (2019). Influence of Laser Light on the Formation and Properties of Silicon Nanocrystals in a-Si/Sn Layered Structures. Ukrainian Journal of Physics, 64(6), 522. https://doi.org/10.15407/ujpe64.6.522

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)