Distinctive Features of Metal-Insulator Transitions, Multiscale Phase Separation, and Related Effects in Hole-Doped Cuprates
DOI:
https://doi.org/10.15407/ujpe64.4.322Keywords:
hole-doped cuprates, metal-insulator transitions, multiscale phase separation, doping-dependent electronic propertiesAbstract
We study the distinctive features of the metal-insulator transitions, multiscale phase separation, and evolution of coexisting insulating and metallic/superconducting phases in hole-doped cuprates. We show how these interrelated phenomena and related effects manifest themselves in a wide doping range from the lightly doped to optimally doped regime in these systems, where the localized and mobile hole carriers reside in hole-poor (insulating) and hole-rich (metallic or superconducting) regions. We argue that small hole-rich regions (i.e. narrow nanoscale metallic islands or stripes) can persist in the insulating phase of the lightly doped cuprates, while the competing insulating, metallic, and superconducting phases would coexist in the under-doped cuprates. When the doping level is increased further, the hole-poor regions (or insulating zones) gradually narrow from macroscale to nanoscale insulating stripes and disappear in the optimally doped cuprates. We demonstrate clearly that the metal-insulator transitions and the coexisting insulating and metallic/superconducting phases are manifested in the suppression of superconductivity in underdoped cuprates and in the different temperature-dependent behaviors of the magnetic susceptibility and c-axis resistivity of lightly to optimally doped cuprates.
References
M. Imada, A. Fujimori, Y. Tokura. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998). https://doi.org/10.1103/RevModPhys.70.1039
P.A. Lee, N. Nagaosa, X.-G.Wen. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006). https://doi.org/10.1103/RevModPhys.78.17
S. Dzhumanov. Theory of Conventional and Unconventional Superconductivity in the High-Tc Cuprates and Other Systems (Nova Science Publishers, 2013).
A.N. Lavrov, V.F. Gandmakher. Low-temperature resistivity of underdoped cuprates. Phys. Usp. 41, 223 (1998). https://doi.org/10.1070/PU1998v041n02ABEH000371
M.A. Kastner, R.J. Birgeneau, G. Shirane, Y. Endoh. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 70, 897 (1998). https://doi.org/10.1103/RevModPhys.70.897
T. Timusk, B. Statt. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61 (1999). https://doi.org/10.1088/0034-4885/62/1/002
S. Dzhumanov. The dependence of Tc on carrier concentration in high-Tc superconductors. Superlatt. Micros. 21, 363 (1997). https://doi.org/10.1006/spmi.1996.0401
S. Dzhumanov, O.K. Ganiev, Sh.S. Djumanov. Pseudogap formation and unusual quasiparticle tunneling in cuprate superconductors: Polaronic and multiple-gap effects on the tunneling spectra. Phys. B 427, 22 (2013). https://doi.org/10.1016/j.physb.2013.06.027
F.Walz. The Verwey transition - a topical review. J. Phys.: Condens. Matter 14, R285 (2002). https://doi.org/10.1088/0953-8984/14/12/203
J. Bardeen, L.N. Cooper, J.R. Schrieffer. Theory of super-conductivity. Phys. Rev. 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175
J. Zaanen. Self-organized one dimensionality. Science 286, 251 (1999). https://doi.org/10.1126/science.286.5438.251
C. Castellani, C. Di Casto, M. Grilli. Stripe formation: A quantum critical point for cuprate superconductors. J. Phys. Chem. Solids 59, 1694 (1998). https://doi.org/10.1016/S0022-3697(98)00085-7
K.A. M?uller, G.-M. Zhao, K. Conder, H. Keller. The ratio of small polarons to free carriers in La2?xSrxCuO4 derived from susceptibility measurements. J. Phys.: Condens. Matter 10, L291 (1998). https://doi.org/10.1088/0953-8984/10/18/001
N.L. Saini, A. Lanzara, A. Bianconi, D. Law, A. Menovsky, K.B. Garg, H. Oyanagi. Decrease of itinerant holes near the metal to insulator crossover in superconducting La1.85Sr0.15CuO4. J. Phys. Soc. Jpn. 67, 393 (1998). https://doi.org/10.1143/JPSJ.67.393
S.A. Kivelson, I. Bindloos, E. Fradkin, V. Oganesyan, J. Tranquada, A. Kapitulnic, C. Howard. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201 (2003). https://doi.org/10.1103/RevModPhys.75.1201
G. Campi, A. Bianconi, N. Poccia, G. Bianconi, L. Barba, G. Arrighetti, D. Innoceti, J. Karpinski, N.D. Zhigadlo, S.M. Kazakov, M. Burghammer, M.V. Zimmermann, M. Sprung, A. Ricci. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 525, 359 (2015). https://doi.org/10.1038/nature14987
A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, S. Uchida. Electronic structure of La2?xSrxCuO4 in the vicinity of the superconductor-insulator transition. Phys. Rev. B 62, 4137 (2000). https://doi.org/10.1103/PhysRevB.62.4137
N.V. Anshukova, A.I. Golovashkin, L.I. Ivanova, A.P. Rusakov. The effect of superstructural ordering on the properties of high-temperature oxide superconductor systems. J. Exp. Theor. Phys 96, 1045 (2003). https://doi.org/10.1134/1.1591216
S.I. Vedeneev. High-temperature superconductors in high and ultrahigh magnetic fields. Phys. Usp. 55, 625 (2012). https://doi.org/10.3367/UFNe.0182.201206h.0669
L. Forro. Out-of-plane resistivity of Bi2Sr2CaCu2O8+x high temperature superconductor. Phys. Lett. A 179 (2), 140 (1993). https://doi.org/10.1016/0375-9601(93)90664-L
S. Ono, Yoichi Ando, T. Murayama, F.F. Balakirev, J.B. Betts, G.S. Boebinger. Metal-to-insulator crossover in the low-temperature normal state of Bi2Sr2?xLaxCuO6+б. Phys. Rev. Lett. 85, 638 (2000). https://doi.org/10.1103/PhysRevLett.85.638
T. Nakano, M. Oda, C. Manabe, N. Momono, Y. Miura, M. Ido. Magnetic properties and electronic conduction of superconducting La2?xSrxCuO4. Phys. Rev. B 49, 16000 (1994). https://doi.org/10.1103/PhysRevB.49.16000
S. Komiya, Y. Ando, X.F. Sun, A.N. Lavrov. c-axis transport and resistivity anisotropy of lightly to moderately doped La2?xSrxCuO4 single crystals: Implications on the charge transport mechanism. Phys. Rev. B 65, 214535 (2002). https://doi.org/10.1103/PhysRevB.65.214535
Sh. Sakita, F. Nakamura, T. Suzuki, T. Fujita. Structural transitions and localization in La2?x?yNdySrxCuO4 with p ? 1/8. J. Phys. Soc. Jpn. 68, 2755 (1999). https://doi.org/10.1143/JPSJ.68.2755
Y. Koike, M. Akoshima, M. Aoyama, K. Nishimaki, T. Kawamata, T. Adachi, T. Noji, M. Kato, I.Watanabe, S. Ohira, W. Higemoto, K. Nagamine, H. Kimura, K. Hirota, K. Yamada, Y. Endoh. Cu-site-substitution effects on the 1/8 anomaly in the high-Tc cuprates and on the anomaly at x = 0.21 in La2?xSrxCuO4. Phys. C 357-360, 82 (2001). https://doi.org/10.1016/S0921-4534(01)00199-X
D. Pines. Spin fluctuations and dx2?y2 pairing in the high temperature superconductors. Tr. J. Phys. 20, 535 (1996).
B.P. Stojkovic, D. Pines. Theory of the longitudinal and Hall conductivities of the cuprate superconductors. Phys. Rev. B 55, 8576 (1997). https://doi.org/10.1103/PhysRevB.55.8576
A.A. Abrikosov. Resonant tunneling in high-Tc superconductors. Phys. Usp. 41, 605 (1998). https://doi.org/10.1070/PU1998v041n06ABEH000411
B. Sac?ep?e, T. Dubouchet, C. Chapelier, M. Sanquer, M. Ovadia, D. Shahar, M. Feigel'man, L. Ioffe. Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys. 7, 239 (2011). https://doi.org/10.1038/nphys1892
B.K. Chakraverty, A. Avignon, D. Feinberg. Understanding high temperature superconducting oxides. J. Less-Common Metals 150, 11 (1989). https://doi.org/10.1016/0022-5088(89)90252-X
D. Emin, M.S. Hillery. Formation of a large singlet bipolaron: Application to high-temperature bipolaronic superconductivity. Phys. Rev. B 39, 6575 (1989). https://doi.org/10.1103/PhysRevB.39.6575
J.T. Devrees, A.S. Alexandrov. Fr?ohlich polaron and bipolaron: Recent developments. Rep. Prog. Phys. 72, 066501 (2009). https://doi.org/10.1088/0034-4885/72/6/066501
S. Dzhumanov, P.J. Baimatov, A.A. Baratov, P.K. Khabibullaev. The continuum theory of delocalized and self-trapped polarons and bipolarons in solids. Phys. C 254, 311 (1995). https://doi.org/10.1016/0921-4534(95)00446-7
L.P. Gor'kov, A.V. Sokol. Phase stratification of an electron liquid in the new superconductors. JETP Lett. 46 (8), 420 (1987).
J. Zaanen, O. Gunnarsson. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 40, 7391 (1989). https://doi.org/10.1103/PhysRevB.40.7391
V.J. Emery, S. Kivelson, O. Zachar. Spin-gap proximity effect mechanism of high-temperature superconductivity. Phys. Rev. B 56, 6120 (1997). https://doi.org/10.1103/PhysRevB.56.6120
K.A. M?uller. Recent experimental insights into HTSC materials. Phys. C 341, 11 (2000). https://doi.org/10.1016/S0921-4534(00)00379-8
L.P. Gor'kov. Inherent inhomogeneity in two-component model for cuprates. J. Supercond. 14, 365 (2001).
V.V. Kabanov. Polarons: From single polaron to short scale phase separation. arXiv: cond-mat/0611174.
S. Dzhumanov, O.K. Ganiev, Sh.S. Djumanov. Normal-state conductivity of underdoped to overdoped cuprate superconductors: Pseudogap effects on the in-plane and c-axis charge transports. Phys. B 440, 17 (2014). https://doi.org/10.1016/j.physb.2014.01.017
P.W. Anderson. Present status of the theory of the high-Tc cuprates. Low Temp. Phys. 32, 282 (2006). https://doi.org/10.1063/1.2199427
M. Eschring. The effect of collective spin-1 excitations on electronic spectra in high-Tc superconductors. Adv. Phys. 55, 47 (2006). https://doi.org/10.1080/00018730600645636
C.M. Varma. High-temperature superconductivity: Mind the pseudogap. Nature 468, 184 (2010). https://doi.org/10.1038/468184a
Yu. A. Nepomnyashchii, E.Ya. Pashitskii. Superfluid Bose liquid with intense bose pair condensate. JETP 98, 178 (1990).
V.L. Vinetskii, N.I. Kashirina, and E.A. Pashitskii. Bipolaron states in ion crystals and the problem of high temperature superconductivity. Ukr. J. Phys. 37, 76 (1992).
N.L. Kashirina, V.D. Lakhno, V.V. Sychyov. Correlation effects and Pekar bipolaron (arbitrary electron-phonon interaction). Phys. Stat. Sol. B 239, 174 (2003). https://doi.org/10.1002/pssb.200301818
Ch.B. Lushchik, A.Ch. Lushchik. Decay of Electronic Excitations with Defect Formation in Solids (Nauka, 1989) (in Russian).
S. Dzhumanov, P.K. Khabibullaev. The coexistence of unstable, metastable, and separated Frenkel pair defects in solids. III. Theory of the non-impact mechanisms for defect formation in non-metals. Phys. Stat. Sol. B 152, 395 (1989). https://doi.org/10.1002/pssb.2221520203
S. Sugai. Local distortion specifying the superconductor phases observed by Raman scattering. Phys. C 185-189, 76 (1991). https://doi.org/10.1016/0921-4534(91)91953-2
F.M. Peeters, J.T. Devreese, G. Verbist. Possible (bi) polaron effects in the high-tc superconductors. Phys. Scrip. T 39, 66 (1991). https://doi.org/10.1088/0031-8949/1991/T39/007
X.X. Bi, P.C. Eklund. Polaron contribution to the infrared optical response of La2?xSrxCuO4+б and La2?xSrxNiO4+б. Phys. Rev. Lett. 70, 2625 (1993). https://doi.org/10.1103/PhysRevLett.70.2625
A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, A. Fujimori, Z-X Shen, T. Kakeshita, H. Eisaki, S. Uchida. Doping-dependent evolution of the electronic structure of La2?xSrxCuO4 in the superconducting and metallic phases Phys. Rev. B 65, 094504 (2002). https://doi.org/10.1103/PhysRevB.65.094504
D.N. Basov, T. Timusk. Electrodynamics of high-Tc superconductors Rev. Mod. Phys. 77, 721 (2005). https://doi.org/10.1103/RevModPhys.77.721
S. Dzhumanov, P.J. Baimatov, O.K. Ganiev, Z.S. Khudayberdiev, B.V. Turimov. Possible mechanisms of carrier localization, metal-insulator transitions and stripe formation in inhomogeneous hole-doped cuprates. J. Phys. Chem. Solid. 73, 484 (2012). https://doi.org/10.1016/j.jpcs.2011.11.029
M. Le Tacon, A. Bosak, S.M. Souliou, G. Dellea, T. Loew, R. Heid, K-P Bohnen, G. Ghiringhelli, M. Krisch, B. Keimer. Giant phonon anomalies and central peak due to charge density wave formation in YBa2Cu3O6.6 Nat. Phys. 10, 52 (2014). https://doi.org/10.1038/nphys2805
E.M. Forgan, E. Blakburn, A.T. Holmes, A.K.R. Briffa, J. Chang, L. Bouchenoire, S.D. Brown, L. Ruixing, D. Bonn, W.N. Hardy, N.B. Christensen, M.V. Zimmermann, M. Hucker, S.M. Hayden. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction. Nat. Commun. 6, 10064 (2015). https://doi.org/10.1038/ncomms10064
M. Miao, D. Ishikawa, R. Heid, M. LeTakon, G. Fabbris, D. Meyers. Incommensurate phonon anomaly and the nature of charge density waves in cuprates. Phys. Rev. X 8, 011008 (2018). https://doi.org/10.1103/PhysRevX.8.011008
T. Kato, T. Noguchi, R. Saito, T. Machida, H. Sakata. Gap distribution in overdoped La2?xSrxCuO4 observed by scanning tunneling spectroscopy. Phys. C 460-462, 880 (2007). https://doi.org/10.1016/j.physc.2007.03.129
A.V. Puchkov, D.N. Basov, T. Timusk. The pseudogap state in high-Tc superconductors: An infrared study J. Phys: Condens. Matt. 8, 10049 (1996). https://doi.org/10.1088/0953-8984/8/48/023
Yu.A. Izyumov, N.M. Plakida, Yu.N. Skryabin. Magnetism in high-temperature superconducting compounds. Usp. Fiz. Nauk. 159, 621 (1989). https://doi.org/10.3367/UFNr.0159.198912b.0621
J. Fink, N. Nucker, M. Alexander, H. Romberg, M. Knupeer, M. Merkel, P. Adelmann, R. Claessen, G. Mante, T. Buslaps, S. Harm, R. Manzke, M. Skibowski. High-energy spectroscopy studies of high-Tc superconductors. Phys. C 185-189, 45 (1991). https://doi.org/10.1016/0921-4534(91)91948-4
S. Ono, Y. Ando, T. Murayama, F.F. Balakirev, J.B. Betts, G.S. Boebinger. Low-temperature normal state of Bi2Sr2?xLaxCuO6+б: Comparison with La2?xSrxCuO4. Phys. C 357-360, 138 (2001). https://doi.org/10.1016/S0921-4534(01)00187-3
A.L. Solovjov, H.-U. Habermeier, T. Haage. Fluctuation conductivity in Y-Ba-Cu-O films with artificially produced defects . Fiz. Nizk. Temp. 28, 144 (2002) [Low Temp. Phys. 28, 99 (2002)]. https://doi.org/10.1063/1.1528572
A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Moda, S. Uchida, Z. Hussain, Z.-X. Shen. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412, 510 (2001). https://doi.org/10.1038/35087518
P.W. Anderson. The Theory of Superconductivity in the High-Tc Cuprates (Princeton Univ. Press, 1997).
J.L. Tallon, J.W. Loram, J.R. Cooper, C. Panagopoulos, C. Bernhard. Superfluid density in cuprate high-Tc superconductors: A new paradigm. Phys. Rev. B 68, 180501 (2003). https://doi.org/10.1103/PhysRevB.68.180501
N. Ichikawa, S. Uchida, J.M. Tranquada, T. Niem?oller, P.M. Gehring, S.-H. Lee, J.R. Schneider. Local magnetic order vs superconductivity in a layered cuprate. Phys. Rev. Lett. 85, 1738 (2000). https://doi.org/10.1103/PhysRevLett.85.1738
P.B. Allen, Z. Fisk, A. Migliori. Normal state transport and elastic properties of high-Tc materials and related compounds. In: Physical Properties of High Temperature Superconductors I. Edited by D.M. Ginsberg (World Scientific, 1988), Chapter 5.
A.S. Alexandrov, V.V. Kabanov. Parameter-free expression for superconducting Tc in cuprates. arXiv:condmat/9903071.
D.M. Eagles. Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456 (1969). https://doi.org/10.1103/PhysRev.186.456
S. Dzhumanov, E.X. Karimboev, Sh.S. Djumanov. Underlying mechanisms of pseudogap phenomena and Bose-liquid superconductivity in high-Tc cuprates. Phys. Lett. A 380, 2173 (2016). https://doi.org/10.1016/j.physleta.2016.04.038
S. Dzhumanov, E.K. Karimboev. Competing pseudogap and impurity effects on the normal-state specific heat properties of cuprate superconductors. Phys. A 406, 176 (2014). https://doi.org/10.1016/j.physa.2014.03.046
M. Houssa, M. Ausloos. Thermal conductivity of high-Tc superconductors: effect of Van Hove singularities. Phys. C 265, 258 (1996). https://doi.org/10.1016/0921-4534(96)00304-8
L. Ping. Possible origin of the broad peak around 450 cm?1 of the c-axis optical conductivity of the underdoped YBa2Cu3O6+x in the superconducting state. Phys. Rev. B 65, 214511 (2002). https://doi.org/10.1103/PhysRevB.65.214511
J.W. Loram, K.A. Mirza, J.R. Cooper. Properties of the superconducting condensate and the normal state pseudo-gap in high Tc cuprates derived from the electronic specific heat. IRC Res. Rev. 3, 77 (1998).
M. Roulin, B. Revaz, A. Junod, A. Erb, E. Walker. High resolution specific heat experiments on the vortex melting line in MBa2Cu3Ox (M = Y, Dy and Eu) crystals: Observation of first- and second-order transitions up to 16T. In: Physics and Materials Science of Vortex States, Flux Pinning and Dynamics. Edited by R. Kossowsky, S. Bose, Z. Durusoy, V. Pan, (Springer, 1999), p. 489. https://doi.org/10.1007/978-94-011-4558-9_22
S. Tajima, J. Sch?utzmann, S. Miyamoto et al. Optical study of c-axis charge dynamics in YBa2Cu3Oy:nn Carrier self-confinement in the normal and the superconducting states. Phys. Rev. B 55, 6051 (1997). https://doi.org/10.1103/PhysRevB.55.6051
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.