Effects of Proximity Potentials on the Cross-Sections of 6,8He + 65Cu Halo Fusion Reactions
DOI:
https://doi.org/10.15407/ujpe64.5.363Keywords:
fusion cross-sections, proximity potentials, halo nucleiAbstract
The comprehensive theoretical study is performed to determine the best proximity potentials in reproducing 6,8He + 65Cu fusion reactions. Twenty three different versions of proximity potentials that consist of Prox 66, Prox 76, Prox 77, Prox 79, Prox 81-I, Prox 81-II, Prox 81-III, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003-I, Prox 2003-II, Prox 2003-III, Prox 2010, BW 91, AW 95, Bass 73, Bass 77, Bass 80, CW 76, Ngo 80, and D are used. The theoretical results are compared with experimental data on 6,8He + 65Cu fusion reactions. The appropriate proximity potentials are determined.
References
A. Navin, V. Tripathi, Y. Blumenfeld, V. Nanal, C. Simenel, J.M. Casandjian, G. de France, R. Raabe, D. Bazin, A. Chatterjee, M. Dasgupta, S. Kailas, R.C. Lemmon, K. Mahata, R.G. Pillay, E.C. Pollacco, K. Ramachandran, M. Rejmund, A. Shrivastava, J.L. Sida, E. Tryggestad. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier. Phys. Rev. C 70, 044601 (2004). https://doi.org/10.1103/PhysRevC.70.044601
A. Chatterjee, A. Navin, A. Shrivastava, S. Bhattacharyya, M. Rejmund, N. Keeley, V. Nanal, J. Nyberg, R.G. Pillay, K. Ramachandran, I. Stefan, D. Bazin, D. Beaumel, Y. Blumenfeld, G. de France, D. Gupta, M. Labiche, A. Lemasson, R. Lemmon, R. Raabe, J.A. Scarpaci, C. Simenel, C. Timis. 1n and 2n transfer with the Borromean nucleus 6He near the Coulomb barrier. Phys. Rev. Lett. 101, 032701 (2008). https://doi.org/10.1103/PhysRevLett.101.032701
A. Lemasson, A. Navin, N. Keeley, M. Rejmund, S. Bhattacharyya, A. Shrivastava, D. Bazin, D. Beaumel, Y. Blumenfeld, A. Chatterjee, D. Gupta, G. de France, B. Jacquot, M. Labiche, R. Lemmon, V. Nanal, J. Nyberg, R.G. Pillay, R. Raabe, K. Ramachandran, J.A. Scarpaci, C. Simenel, I. Stefan, C.N. Timis. Reactions with the double-Borromean nucleus 8He. Phys. Rev. C 82, 044617 (2010). https://doi.org/10.1103/PhysRevC.82.044617
F.A. Majeed, F.A. Mahdi. Quantum mechanical calculations of a fusion reaction for some selected halo systems. Ukr. J. Phys. 64, 11 (2019). https://doi.org/10.15407/ujpe64.1.11
A.A. Kulko, N.A. Demekhina, R. Kalpakchieva, N.N. Kolesnikov, V.G. Lukashik, Yu E. Penionzhkevich, D.N. Rassadov, N.K. Skobelev. Isomeric ratios for 196,198Tl and 196,198Au from fusion and transfer in the interaction of 6He with 197Au. J. Phys. G: Nucl. Part. Phys. 34, 2297 (2007). https://doi.org/10.1088/0954-3899/34/11/007
R. Wolski, I. Martel, L. Standylo, L. Acosta, J.L. Aguado, C. Angulo, R. Berjillos, J.P. Bolivar, J.A. Duenas, M.S. Golovkov, T. Keutgen, M. Mazzocco, A. Padilla, A.M. S?anchez-Ben??tez, C. Signorini, M. Romoli, K. Rusek. Sub-barrier fusion of 6He with 206Pb. Eur. Phys. J. A 47, 111 (2011). https://doi.org/10.1140/epja/i2011-11111-7
S.M. Lukyanov, Yu.E. Penionzhkevich, R.A. Astabatian, N.A. Demekhina, Z. Dlouhy, M.P. Ivanov, R. Kalpakchieva, A.A. Kulko, E.R. Markarian, V.A. Maslov, R.V. Revenko, N.K. Skobelev, V.I. Smirnov, Yu.G. Sobolev, W. Trazska, S.V. Khlebniko. Study of the 2n-evaporation channel in the 4,6He + 206,208Pb reactions. Phys. Lett. B 670, 321 (2009). https://doi.org/10.1016/j.physletb.2008.11.021
A. Lemasson, A. Shrivastava, A. Navin, M. Rejmund, N. Keeley, V. Zelevinsky, S. Bhattacharyya, A. Chatterjee, G. de France, B. Jacquot, V. Nanal, R. G. Pillay, R. Raabe, C. Schmitt. Modern Rutherford experiment: Tunneling of the most neutron-rich nucleus. Phys. Rev. Lett. 103, 232701 (2009). https://doi.org/10.1103/PhysRevLett.103.232701
V.V. Parkar, G. Marquinez, I. Martel, A.M. S?anchez-Ben??tez, L. Acosta, R. Berjillos, J. Dueсas, J.L. Flores, J.P. Bol??var, A. Padilla, M.A.G. Alvarez, D. Beaumel, M.J.G. Borge, A. Chbihi, C. Cruz, M. Cubero, J.P. Fernandez Garcia, B. Fern?andez Martнnez, J. Gomez Camacho, N. Keeley, J.A. Labrador, M. Marquis, M. Mazzocco, A. Pakou, N. Patronis, V. Pesudo, D. Pierroutsakou, R. Raabe, K. Rusek, R. Silvestri, L. Standylo, I. Strojek, N. Soic, O. Tengblad, R. Wolski, A.H. Ziad. Fusion of 8He with 206Pb around Coulomb barrier energies. EPJ Web of Conferences 17, 16009 (2011). https://doi.org/10.1051/epjconf/20111716009
G.R. Satchler, W.G. Love. Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 183 (1979). https://doi.org/10.1016/0370-1573(79)90081-4
J.W. Negele. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54, 913 (1982). https://doi.org/10.1103/RevModPhys.54.913
D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei. Phys. Rev. C 5, 626 (1972). https://doi.org/10.1103/PhysRevC.5.626
K.P. Santhosh, I. Sukumaran. Alpha decay studies on Po isotopes using different versions of nuclear potentials. Eur. Phys. J. A 53, 246 (2017). https://doi.org/10.1140/epja/i2017-12446-7
R. Gharaei, V. Zanganeh. Temperature-dependent potential in cluster-decay process. Nucl. Phys. A 952, 28 (2016). https://doi.org/10.1016/j.nuclphysa.2016.04.001
K. Manimaran, M. Balasubramaniam. Deformation and orientation effects in the ternary fragmentation potential of the 4He- and 10Be-accompanied fission of the 252Cf nucleus. J. Phys. G, Nucl. Part. Phys. 37, 045104 (2010). https://doi.org/10.1088/0954-3899/37/4/045104
M Aygun. Alternative potentials analyzing the scattering cross-sections of 7,9,10,11,12,14Be isotopes from a 12C target: proximity potentials. J. Korean Phys. Soc. 73, 1255 (2018). https://doi.org/10.3938/jkps.73.1255
M Aygun. A comparison of proximity potentials in the analysis of heavy-ion elastic cross-sections. Ukr. J. Phys. 63, 881 (2018). https://doi.org/10.15407/ujpe63.10.881
M Aygun. The application of some nuclear potentials for quasielastic scattering data of the 11Li + 28Si reaction and its consequences. Turk. J. Phys. 42, 302 (2018). https://doi.org/10.3906/fiz-1801-5
M Aygun. Comparative analysis of proximity potentials to describe scattering of 13C projectile off 12C, 16O, 28Si and 208Pb nuclei. Rev. Mex. Fis. E 64, 149 (2018). https://doi.org/10.31349/RevMexFisE.64.149
J. B locki, J. Randrup, W.J. ? Swi?atecki, C.F. Tsang. Proximity forces. Ann. Phys. (NY) 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4
I. Dutt, R.K. Puri. Comparison of different proximity potentials for asymmetric colliding nuclei. Phys. Rev. C 81, 064609 (2010). https://doi.org/10.1103/PhysRevC.81.064609
W.D. Myers, W.J. ? Swiatecki. Nuclear masses and deformations. Nucl. Phys. 81, 1 (1966). https://doi.org/10.1016/0029-5582(66)90639-0
P. M?oller, J.R. Nix. Macroscopic potential-energy surfaces for symmetric fission and heavy-ion reactions. Nucl. Phys. A 272, 502 (1976). https://doi.org/10.1016/0375-9474(76)90345-6
H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20, 992 (1979). https://doi.org/10.1103/PhysRevC.20.992
P. M?oller, J.R. Nix. Nuclear mass formula with a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential. Nucl. Phys. A 361, 117 (1981). https://doi.org/10.1016/0375-9474(81)90473-5
G. Royer, B. Remaud. On the fission barrier of heavy and superheavy nuclei. J. Phys. G: Nucl. Part. Phys. 10, 1541 (1984). https://doi.org/10.1088/0305-4616/10/11/010
W. Reisdorf. Heavy-ion reactions close to the Coulomb barrier. J. Phys. G, Nucl. Part. Phys. 20, 1297 (1994). https://doi.org/10.1088/0954-3899/20/9/004
R. Kumar. Effect of isospin on the fusion reaction cross section using various nuclear proximity potentials within the Wong model. Phys. Rev. C 84, 044613 (2011). https://doi.org/10.1103/PhysRevC.84.044613
P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki. Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185 (1995). https://doi.org/10.1006/adnd.1995.1002
K. Pomorski, J. Dudek. Nuclear liquid-drop model and surface-curvature effects. Phys. Rev. C 67, 044316 (2003). https://doi.org/10.1103/PhysRevC.67.044316
I. Dutt, R.K. Puri. Role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions. Phys. Rev. C 81, 047601 (2010). https://doi.org/10.1103/PhysRevC.81.047601
R. Gharaei, V.Zanganeh, N. Wang. Systematic study of proximity potentials for heavy-ion fusion cross sections. Nucl. Phys. A 979, 237 (2018). https://doi.org/10.1016/j.nuclphysa.2018.09.032
G.L. Zhang, Y.J. Yao, M.F. Guo, M. Pan, G.X. Zhang, X.X. Liu. Comparative studies for different proximity potentials applied to large cluster radioactivity of nuclei. Nucl. Phys. A 951, 86 (2016). https://doi.org/10.1016/j.nuclphysa.2016.03.039
A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995). https://doi.org/10.1016/0375-9474(95)00374-A
R. Bass. Threshold and angular momentum limit in the complete fusion of heavy ions. Phys. Lett. B 47, 139 (1973). https://doi.org/10.1016/0370-2693(73)90590-X
R. Bass. Fusion of heavy nuclei in a classical model. Nucl. Phys. A 231, 45 (1974). https://doi.org/10.1016/0375-9474(74)90292-9
R. Bass. Nucleus-nucleus potential deduced from experimental fusion cross sections. Phys. Rev. Lett. 39, 265 (1977). https://doi.org/10.1103/PhysRevLett.39.265
P.R. Christensen, A. Winther. The evidence of the ion-ion potentials from heavy ion elastic scattering. Phys. Lett. B 65, 19 (1976). https://doi.org/10.1016/0370-2693(76)90524-4
H. Ng?o, Ch. Ng?o. Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation. Nucl. Phys. A 348, 140 (1980). https://doi.org/10.1016/0375-9474(80)90550-3
V.Yu. Denisov. Interaction potential between heavy ions. Phys. Lett. B 526, 315 (2002). https://doi.org/10.1016/S0370-2693(01)01513-1
G.R. Satchler. Direct Nuclear Reactions (Oxford Univ. Press, 1983).
I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Computer Phys. Rep. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.