Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles


  • L. O. Mazur Taras Shevchenko National University, Faculty of Physics
  • L. A. Bulavin Taras Shevchenko National University, Faculty of Physics
  • N. V. Vygornitskii F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine
  • N. I. Lebovka F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Taras Shevchenko National University, Faculty of Physics




Monte-Carlo method, two-dimensional films, aging, Brownian motion, electrical conductivity, optical transparency


The effects of Brownian motions on the electrical conductivity and optical transparency of two-dimensional films filled with needle-like particles (needles) have been investigated, using the Monte-Carlo method. The initial state of the system was produced with the use of the random-sequential adsorption process. In the subsequent evolution (aging) of the system, the translation and rotation diffusion motions are taken into account. The intersections between needles are forbidden. The interaction potential between needles is short-range (i.e., it is nonzero at distances less than Rc) and is dependent on the angle between needles ф(∝ cos2 ф). The aging results in the formation of island, net-like, and hole-like (with significant cavities) structures depending on parameters of the interaction potential. The relations between the electrical conductivity and the optical transparency during the aging are discussed.


D.J. Lipomi, M. Vosgueritchian, B.C.K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788 (2011). https://doi.org/10.1038/nnano.2011.184

L. Hu, D.S. Hecht, G. Gr?uner. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513 (2004). https://doi.org/10.1021/nl048435y

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H.R. Choi, S. Baik. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5,853 (2010). https://doi.org/10.1038/nnano.2010.232

D.S. Hecht, L. Hu, G. Irvin. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482 (2011). https://doi.org/10.1002/adma.201003188

Y. Leterrier, L. Medico, F. Demarco, J.-A. M?anson, U. Betz, M.F. Escola, M.K. Olsson, F. Atamny. Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films 460, 156 (2004). https://doi.org/10.1016/j.tsf.2004.01.052

J.S. Moon, J.H. Park, T.Y. Lee, Y.W. Kim, J.B. Yoo, C.Y. Park, J.M. Kim, K.W. Jin. Transparent conductive film based on carbon nanotubes and PEDOT composites. Diam. Relat. Mater. 14, 1882 (2005). https://doi.org/10.1016/j.diamond.2005.07.015

M.-J. Yim, K.-W. Paik. Design and understanding of anisotropic conductive films (ACFs) for LCD packaging. In: Proceedings of the First IEEE International Symposium on Polymeric Electronics Packaging (IEEE, 1997), p. 233.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009). https://doi.org/10.1021/nl902623y

X. Wang, L. Zhi, K. M?ullen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323 (2008). https://doi.org/10.1021/nl072838r

L. Lisetski, M. Soskin, N. Lebovka. Carbon nanotubes in liquid crystals: Fundamental properties and applications, in: Phys. Liq. Matter Mod. Probl. (Springer, 2015). https://doi.org/10.1007/978-3-319-20875-6_10

L. Jiang, L. Gao, J. Sun. Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interface Sci. 260, 89 (2003). https://doi.org/10.1016/S0021-9797(02)00176-5

S.D. Bergin, V. Nicolosi, H. Cathcart, M. Lotya, D. Rickard, Z. Sun, W.J. Blau, J.N. Coleman. Large populations of individual nanotubes in surfactant-based dispersions without the need for ultracentrifugation. J. Phys. Chem. C 112, 972 (2008). https://doi.org/10.1021/jp076915i

M. Loginov, N. Lebovka, E. Vorobiev. Laponite assisted dispersion of carbon nanotubes in water. J. Colloid Interface Sci. 365, 127 (2012). https://doi.org/10.1016/j.jcis.2011.09.025

V. Tohver, J.E. Smay, A. Braem, P. V Braun, J.A. Lewis. Nanoparticle halos: A new colloid stabilization mechanism. Proc. Natl. Acad. Sci. 98, 8950 (2001). https://doi.org/10.1073/pnas.151063098

O. Yaroshchuk, S. Tomylko, O. Kovalchuk, N. Lebovka. Liquid crystal suspensions of carbon nanotubes assisted by organically modified Laponite nanoplatelets. Carbon 68, 389 (2014). https://doi.org/10.1016/j.carbon.2013.11.015

B. Smith, K. Wepasnick, K.E. Schrote, H.-H. Cho, W.P. Ball, D.H. Fairbrother. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure-property relationship. Langmuir 25, 9767 (2009). https://doi.org/10.1021/la901128k

M. Farbod, S.K. Tadavani, A. Kiasat. Surface oxidation and effect of electric field on dispersion and colloids stability of multiwalled carbon nanotubes. Colloids Surfaces A 384, 685 (2011). https://doi.org/10.1016/j.colsurfa.2011.05.041

Y.Y. Tarasevich, V.V. Laptev, V.A. Goltseva, N.I. Lebovka. Influence of defects on the effective electrical conductivity of a monolayer produced by random sequential adsorption of linear k-mers onto a square lattice. Phys. A. Stat. Mech. Its Appl. 477, 195 (2017). https://doi.org/10.1016/j.physa.2017.02.084

Y.Y. Tarasevich, N.I. Lebovka, I.V. Vodolazskaya, A.V. Eserkepov, V.A. Goltseva, V.V. Chirkova. Anisotropy in electrical conductivity of two-dimensional films containing aligned nonintersecting rodlike particles: Continuous and lattice. Phys. Rev. E 98, 12105 (2018). https://doi.org/10.1103/PhysRevE.98.012105

N.I. Lebovka,Y.Y.Tarasevich,N.V.Vygornitskii,A.V.Eserkepov, R.K. Akhunzhanov. Anisotropy in electrical conductivity of films of aligned intersecting conducting rods. Phys. Rev. E 98, 12104 (2018). https://doi.org/10.1103/PhysRevE.98.012104

Y.Y. Tarasevich, I.V. Vodolazskaya, A.V. Eserkepov, V.A. Goltseva, P.G. Selin, N.I. Lebovka. Simulation of the electrical conductivity of two-dimensional films with aligned rod-like conductive fillers: Effect of the filler length dispersity. J. Appl. Phys. 124, 145106 (2018). https://doi.org/10.1063/1.5051090

N.I. Lebovka, Y.Y. Tarasevich, V.A. Gigiberiya, N.V. Vygornitskii, Diffusion-driven self-assembly of rod-like particles: Monte-Carlo simulation on a square lattice. Phys. Rev. E 95, 52130 (2017). https://doi.org/10.1103/PhysRevE.95.052130

Y.Y. Tarasevich, V.V. Laptev, A.S. Burmistrov, N.I. Lebovka. Pattern formation in a two-dimensional two-species diffusion model with anisotropic nonlinear diffusivities: a lattice approach. J. Stat. Mech. Theory Exp. 2017, 093203 (2017). https://doi.org/10.1088/1742-5468/aa82bf

Y.Y. Tarasevich, V.V. Laptev, A.S. Burmistrov, N.I. Lebovka. Effect of aging on electrical conductivity of two-dimensional composite with rod-like fillers. J. Phys. Conf. Ser. 955, 12006 (2018). https://doi.org/10.1088/1742-6596/955/1/012006

N.I. Lebovka, Y.Y. Tarasevich, N.V. Vygornitskii. Vertical drying of a suspension of sticks: Monte Carlo simulation for continuous two-dimensional problem. Phys. Rev. E 97, 22136 (2018). https://doi.org/10.1103/PhysRevE.97.022136

N.I. Lebovka, N.V. Vygornitskii, L.A. Bulavin, L.O. Mazur, L.N. Lisetski, Monte Carlo studies of optical transmission of anisotropic suspensions, J. Mol. Liq. 272, 1025 (2018). https://doi.org/10.1016/j.molliq.2018.10.117

J.W. Evans. Random and cooperative sequential adsorption. Rev. Mod. Phys. 65, 1281 (1993). https://doi.org/10.1103/RevModPhys.65.1281

G. Li, J.X. Tang. Diffusion of actin filaments within a thin layer between two walls. Phys. Rev. E 69, 61921 (2004). https://doi.org/10.1103/PhysRevE.69.061921

S. Broersma. Rotational diffusion constant of a cylindrical particle. J. Chem. Phys. 32, 1626 (1960). https://doi.org/10.1063/1.1730994

S. Broersma. Viscous force constant for a closed cylinder. J. Chem. Phys. 32, 1632 (1960). https://doi.org/10.1063/1.1730995

S. Broersma. Viscous force and torque constants for a cylinder. J. Chem. Phys. 74, 6989 (1981). https://doi.org/10.1063/1.441071

D.J. Frank, C.J. Lobb. Highly efficient algorithm for percolative transport studies in two dimensions. Phys. Rev. B 37, 302 (1988). https://doi.org/10.1103/PhysRevB.37.302



How to Cite

Mazur, L. O., Bulavin, L. A., Vygornitskii, N. V., & Lebovka, N. I. (2019). Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 64(4), 354. https://doi.org/10.15407/ujpe64.4.354



Structure of materials

Most read articles by the same author(s)

1 2 3 4 5 6 > >>