Dynamic Grating Recording by a Light-Induced Modification of the Order Parameter in Dye-Doped Chiral Nematic Liquid Crystals

  • A. Iljin Institute of Physics, Nat. Acad. of Sci. of Ukraine, Institute de Physique de Nice, UMR 7010, Universit´e de Nice-Sophia Antipolis, CNRS
  • D. Wei Institute de Physique de Nice, UMR 7010, Universit´e de Nice-Sophia Antipolis, CNRS, Beijing Genomics Institute
  • U. Bortolozzo Institute de Physique de Nice, UMR 7010, Universit´e de Nice-Sophia Antipolis, CNRS
  • S. Residori Institute de Physique de Nice, UMR 7010, Universit´e de Nice-Sophia Antipolis, CNRS
Keywords: nonlinear optics, two-wave mixing, dynamic gratings, liquid crystals, cholesterics, light-induced order modification


The dynamic grating recording in dye-doped chiral nematic liquid crystals is studied. It is shown that the mechanism responsible for the grating recording can be ascribed to a photoinduced modification of the order parameter of a liquid crystal within the range of optical intensities, for which the orientational nonlinearity remains quenched by the structural order of the chiral structure. The two-wave mixing dynamic behavior is analyzed for different intensities of the recording beams, by comparing the self-diffraction regime with the probe diffraction. This allows us to distinguish a particular mechanism of optical nonlinearity. The photo-induced modulation of the order parameter and the respective changes of medium’s refractive indices determine the relatively fast response times, local nonlinear response, and quite high diffraction efficiency within an extremely wide intensity range (more than three orders of magnitude) The chiral helical structure hinders the nematic director reorientation, prevents the appearance of surface effects, and is very favorable for the manipulation of a nonlinear polarization. Such new mechanism could also be extended to the recording of arbitrary phase profiles as requested in several applications for the manipulation of a light-beam.


I.C. Khoo. Nonlinear optics of liquid crystalline materials. Phys. Rep. 471, 221 (2009). https://doi.org/10.1016/j.physrep.2009.01.001

F. Simoni, L. Lucchetti, D.E. Lucchetta, O. Francescangeli. On the origin of the huge nonlinear response of dye-doped liquid crystals. Opt. Express 9, 85 (2001). https://doi.org/10.1364/OE.9.000085

A. Petrossian, S. Residori. Surfactant enhanced reorientation in dye-doped nematic liquid crystals, Europ. Lett. 60, 79 (2002). https://doi.org/10.1209/epl/i2002-00321-x

A. Petrossian, S. Residori. Light driven motion of the nematic director in azo-dye doped liquid crystals, Opt. Commun. 228, 145 (2003). https://doi.org/10.1016/j.optcom.2003.09.021

P.G. de Gennes, J. Prost. The Physics of Liquid Crystals (Clarendon Press, 1993) [ISBN: 0198520247].

G. Chilaya. Cholesteric liquid crystals: optics, electrooptics, and photo-optics, in Chirality in Liquid Crystals, edited by H.S. Kitzerow, C. Bahr (Springer, 2001) [ISBN 978-0-387-21642-3].

V. Boychuk, I. Gerus, A. Iljin, J. Parka. Light-controlled helical pitch and dynamic gratings. Opto-Electron. Rev. 17, 287 (2009). https://doi.org/10.2478/s11772-009-0009-8

H. Coles, S. Morris. Liquid-crystal lasers. Nat. Photonics 4, 676 (2010). https://doi.org/10.1038/nphoton.2010.184

U.A. Hrozhyk, S.V. Serak, N.V. Tabiryan, T.J. White, T.J. Bunning. Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors. Opt. Express 18, 9651 (2010). https://doi.org/10.1364/OE.18.009651

U.A. Hrozhyk, S.V. Serak, N.V. Tabiryan, T.J. White, T.J. Bunning. Nonlinear optical properties of fast, photoswitchable cholesteric liquid crystal bandgaps. Opt. Mater. Express 1, 943 (2011). https://doi.org/10.1364/OME.1.000943

D. Wei, A. Iljin, Z. Cai, S. Residori, U. Bortolozzo. Two-wave mixing in chiral dye-doped nematic liquid crystals. Opt. Lett. 37, 734 (2012). https://doi.org/10.1364/OL.37.000734

D.Wei, U. Bortolozzo, J.P. Huignard, S. Residori. Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics. Opt. Express 21, 19544 (2012). https://doi.org/10.1364/OE.21.019544

N. Aryasova, A. Iljin, V. Reshetnyak, Yu. Reznikov, A. Gluschenko, J.West. Orientation of nematic liquid crystals on random anchoring surface. Mol. Cryst. Liq. Cryst. 375, 165 (2002). https://doi.org/10.1080/10587250210593

A. Iljin, V. Reshetnyak, S. Shelestiuk, V. Yarmolenko. Surface director sliding in LC cell with light-controlled chirality. Mol. Cryst. Liq. Cryst. 453, 263 (2006). https://doi.org/10.1080/15421400600653795

Photorefractive Materials and Their Applications. Edited by P. Gunter, J.P. Huignard (Springer, 2006), Vol. 1 [ISBN: 0-387-25191-X].

W.R. Klein, B.D. Cook. Unified approach to ultrasonic light diffraction. IEEE Trans. on Sonics & Ultrasonics SU-14, 123 (1967). https://doi.org/10.1109/T-SU.1967.29423

S. Residori, U. Bortolozzo, J.P. Huignard. Slow light using wave mixing in liquid crystal light valve. Appl. Phys. B 95, 551 (2009). https://doi.org/10.1007/s00340-009-3556-2

A. Iljin. Transient modulation of order parameter and optical non-linearity in a chiral nematic liquid crystal. Mol. Cryst. Liq. Cryst. 543, 143 (2011). https://doi.org/10.1080/15421406.2011.569453

A. Iljin. Light-induced order modification - the way to speed up. J. Mol. Liq. 267, 28 (2018). https://doi.org/10.1016/j.molliq.2018.01.047

D. Wei, S. Residori, U. Bortolozzo. Phase conjugation and slow light in dye-doped chiral nematics. Opt. Lett. 37, 4684 (2012). https://doi.org/10.1364/OL.37.004684

Y.-J. Wang, M. Pei, P. Peng, G.O. Carlisle. All-optical polarization-independent diffraction in dye-doped cholesteric liquid crystal. J. Mat. Sci. - Mater. Electronics 17, 385 (2006). https://doi.org/10.1007/s10854-006-7475-2

C.J. Gerritsma, P. Van Zanten. Periodic perturbations in the cholesteric plane texture. Phys. Lett. A 37, 47 (1971). https://doi.org/10.1016/0375-9601(71)90325-2

I. J?anossy, L. Szabados. Photoisomerization of azo-dyes in nematic liquid crystals. J. Nonlin. Opt. Phys. Mater. 7, 539 (1998). https://doi.org/10.1142/S0218863598000399

M. Fally, M. Imlau, R.A. Rupp et al. Specific recording kinetics as a general property of unconventional photorefractive media. Phys. Rev. Lett. 93, 243903 (2004). https://doi.org/10.1103/PhysRevLett.93.243903

E. Korchemskaya, N. Burykin, S. Bugaychuk et al. Dynamic holography in bacteriorhodopsin/gelatinfilms: effects of light-dark adaptation at different humidity. Photochem. Photobiol. 83, 403 (2007). https://doi.org/10.1111/j.1751-1097.2007.00056.x

S. Mukherjee, S.C. Bera. Low temperature laser flash photolysis and spectral studies of methyl red. J. Chem. Soc. Faraday Trans. 94, 67 (1998). https://doi.org/10.1039/a705642g

M. Hara, S. Ichikawa, H. Takezoe, A. Fukuda. Binary mass diffusion constants in nematic liquid crystals studied by forced Rayleigh scattering. Jpn. J. Appl. Phys. 23, 1420 (1984). https://doi.org/10.1143/JJAP.23.1420

E. Ouskova, Yu. Reznikov, S.V. Shiyanovskii et al. Photoorientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface. Phys. Rev. E 64, 051709 (2001). https://doi.org/10.1103/PhysRevE.64.051709

How to Cite
Iljin, A., Wei, D., Bortolozzo, U., & Residori, S. (2019). Dynamic Grating Recording by a Light-Induced Modification of the Order Parameter in Dye-Doped Chiral Nematic Liquid Crystals. Ukrainian Journal of Physics, 64(4), 293. https://doi.org/10.15407/ujpe64.4.293
Liquid crystals and polymers