Spherically Symmetric Configurations in General Relativity in the Presence of a Linear Massive Scalar Field: Separation of a Distribution of Test Body Circular Orbits

Authors

  • O. S. Stashko Taras Shevchenko National University of Kyiv, Ukraine
  • V. I. Zhdanov Taras Shevchenko National University of Kyiv, Ukraine

DOI:

https://doi.org/10.15407/ujpe64.3.189

Keywords:

relativistic astrophysical objects, scalar fields, accretion disks

Abstract

We study static spherically symmetric configurations in the presence of linear massive scalar fields within General Relativity. Static solutions of the Einstein equations are considered under conditions of asymptotic flatness. Each solution is fixed by the configuration mass and the field strength parameter, which are defined at spatial infinity. The metric coefficients and the scalar field for a specific configuration are obtained numerically. Then we study the time-like geodesics describing the test particle motion. The focus is on the distribution of stable circular orbits (SCOs) of the test particles around a configuration. We found that, for the continuum of configuration parameters, there exist two unlinked regions of SCOs that are separated by some annular region, where SCOs do not exist.

References

B. Novosyadlyi, V. Pelykh, Yu. Shtanov, A. Zhuk. Dark Energy and Dark Matter of the Universe. Ed. by V. Shulga (Kiev, Akademperiodyka, 2013), Vol. 1 [ISBN: 978-966-360-240-0].

A. Linde. Inflationary Cosmology after Planck 2013. (2014) arXiv:1402.0526 [hep-th].

S. Nojiri, S.D. Odintsov. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 505, 59 (2011). https://doi.org/10.1016/j.physrep.2011.04.001

S. Nojiri, S.D. Odintsov, V.K. Oikonomou. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rept. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001

V. Sahni. Dark matter and dark energy. Lect. Notes Phys. 653, 141 (2004).

E.J. Copeland, M. Sami, S. Tsujikawa. Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X

K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8

O. Sergijenko, R. Durrer, B. Novosyadlyj. Observational constraints on scalar field models of dark energy with barotropic equation of state. JCAP 08, 004 (2011).

B. Novosyadlyj, O. Sergijenko, R. Durrer, V. Pelykh. Do the cosmological observational data prefer phantom dark energy? Phys. Rev. D 86, 083008 (2012). https://doi.org/10.1103/PhysRevD.86.083008

O. Sergijenko, B. Novosyadlyj. Sound speed of scalar field dark energy: weak effects and large uncertainties. Phys. Rev. D 91, 083007 (2015). https://doi.org/10.1103/PhysRevD.91.083007

L.L. Jenkovszky, V.I. Zhdanov, E.J. Stukalo. Cosmological model with variable vacuum pressure. Phys. Rev. D 90, 023529 (2014). https://doi.org/10.1103/PhysRevD.90.023529

V.I. Zhdanov, S.S. Dylda. Scalar field versus hydrodynamic models in homogeneous isotropic cosmology. Phys. Rev. D 97, Is. 12, 124033 (2018). A. Diez-Tejedor. Note on scalars, perfect fluids, constrained field theories, and all that. Phys. Lett. B 727, 27 (2013). https://doi.org/10.1016/j.physletb.2013.10.030

G.H. Derrick. Comments on nonlinear wave equations as models for elementary particles.J. Math. Phys. 5, 1252 (1964). https://doi.org/10.1063/1.1704233

I.Z. Fisher. Scalar mesostatic field with regard for gravitational effects. Zh. Exp. Theor. Phys. 18, 636 (1948) (in Russian). A.I. Janis, E.T. Newman, J. Winicour. Reality of the Schwarzschild singularity. Phys. Rev. Lett. 20, (1968).

J.D. Bekenstein. Nonexistence of baryon number for static black holes. Phys. Rev. D 5, 1239 (1972). https://doi.org/10.1103/PhysRevD.5.1239

J.D. Bekenstein. Black holes: classical properties, thermodynamics and heuristic quantization. In: Cosmology and Gravitation, M. Novello, ed. (Atlantisciences, 2000).

R.A. Asanov. Point source of massive scalar field in gravitational theory. Teor. Matem. Fiz. 20, 1 (1974) (in Russian). https://doi.org/10.1007/BF01038757

G. Stephenson. A static spherically symmetric solution of the Einstein–Maxwell–Yukawa field equations. Proceed. Cambridge Phil. Soc. 58(3), 521 (1962). https://doi.org/10.1017/S0305004100036793

D. Solovyev, A. Tsirulev. General properties and exact models of static self-gravitating scalar field configurations. Classic. Quant. Grav. 29, 055013, (2012). https://doi.org/10.1088/0264-9381/29/5/055013

Z. Stuchl? ik, J. Schee. Appearance of Keplerian discs orbiting Kerr superspinars. Classic. Quant. Grav. 27, 215017 (2010). https://doi.org/10.1088/0264-9381/27/21/215017

A.N. Chowdhury, M. Patil, D. Malafarina, P.S. Joshi. Circular geodesics and accretion disks in the Janis–Newman–Winicour and gamma metric spacetimes. Phys. Rev. D 85, 104031 (2012). https://doi.org/10.1103/PhysRevD.85.104031

R.S.S. Vieira, J. Schee, W. Klu?zniak, Z. Stuchl? ik, M. Abramowicz. Circular geodesics of naked singularities in the Kehagias–Sfetsos metric of Horava's gravity. Phys. Rev. D 99, 024035 (2014). https://doi.org/10.1103/PhysRevD.90.024035

D. Pugliese, H. Quevedo, R. Ruffini. Equatorial circular motion in Kerr spacetime. Phys. Rev. D 84, 044030 (2011). https://doi.org/10.1103/PhysRevD.84.044030

D. Pugliese, H. Quevedo, R. Ruffini. Equatorial circular motion in Kerr spacetime. Phys. Rev. D 88, 024042 (2013). https://doi.org/10.1103/PhysRevD.88.024042

D. Pugliese, H. Quevedo, R. Ruffini. General classification of charged test particle circular orbits in Reissner–Nordstrem spacetime Eur. Phys. J. C 77, 206 (2017). https://doi.org/10.1140/epjc/s10052-017-4769-x

K. Boshkayev, E. Gasperin, A.C. Gutierrez-Pineres, H. Quevedo, S. Toktarbay. Motion of test particles in the field of a naked singularity. Phys. Rev. D 93, 024024 (2016). https://doi.org/10.1103/PhysRevD.93.024024

V.I. Zhdanov, O.S. Stashko. The body motion in gravitational field of a spherically symmetric configuration with scalar field in General relativity. Bulletin of Taras Shevchenko National University of Kyiv, 56, 35 (2017).

O.S. Stashko, V.I. Zhdanov. Disconnected regions of stable circular orbits in presence of massive scalar field. Odessa Astron. Public. 30, 48 (2017). https://doi.org/10.18524/1810-4215.2017.30.114270

O.S. Stashko, V.I. Zhdanov. Spherically symmetric configurations of General Relativity in presence of scalar fields: separation of circular orbits. Gener. Relat. Gravit. 50, 105 (2018). https://doi.org/10.1007/s10714-018-2425-x

L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields: Vol. 2 (Course of Theoretical Physics) (Elsevier, 1987) [ISBN: 978-0750627689].

A.P. Lightman, T.R. White. Effects of cold matter in active galactic nuclei – A broad hump in the X-ray spectra. Astrophys. J. 335, 57 (1988). https://doi.org/10.1086/166905

A.C. Fabian, M.J. Rees, L. Stella, N.E. White. X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Notic. Roy. Astron. Soc. 238, 729 (1989). https://doi.org/10.1093/mnras/238.3.729

Downloads

Published

2019-04-01

How to Cite

Stashko, O. S., & Zhdanov, V. I. (2019). Spherically Symmetric Configurations in General Relativity in the Presence of a Linear Massive Scalar Field: Separation of a Distribution of Test Body Circular Orbits. Ukrainian Journal of Physics, 64(3), 189. https://doi.org/10.15407/ujpe64.3.189

Issue

Section

Fields and elementary particles