Behavior of Metallic Diagnostic Mirrors with Different Structures under Conditions Simulating Those in the ITER Fusion Reactor

  • V. S. Voitsenya Institute of Plasma Physics, National Science Center Kharkiv Institute of Physics and Technology, Nat. Acad. of Sci. of Ukraine
  • O. F. Bardamid Taras Shevchenko National University of Kyiv
Keywords: plasma, ITER, diagnostic mirror, surface ion bombardment, relief, metallic mirror structure, mechanism of relief formation

Abstract

In the paper by V.S. Voitsenya et al. (Plasma Phys. Rep. 20, 217 (1994)), a methodology aimed at an optimal selection of materials for in-vessel mirrors used in optical and laser methods of plasma diagnostics in the experimental fusion reactor ITER was elaborated. The corresponding systematic simulation studies concerning the behavior of mirror specimens fabricated from different metals with different structures – polycrystalline (Be, Al, SS, Cu, Ti, Mo, W, Ta), single-crystalline (SS, Ni, Mo, W), and film (i.e. the film/substrate structure, namely, Be/Cu, Cu/Cu, Rh/Cu, Rh/V, Rh/SS, Mo/SS, Mo/Mo) – as well as mirrors fabricated from amorphous alloys of the ZrTiCuNiBe type, under long-term sputtering by deuterium (in some cases, argon) plasma ions were carried out. Amorphous mirror specimens were shown to be much more resistant to the development of roughness in comparison with mirrors with any other structure, which results from the complete absence of any ordered structure on the surface on a scale exceeding a few nanometers. The most important results were confirmed experimentally on such fusion installations as the TEXTOR (J¨ulich, Germany), ASDEX-U (Garching, Germany), and Tore Supra (Cadarachе, France) tokamaks, the heliotron Large Helical Device (Toki, Japan), on the small tokamak TRIAM-1M (Kyoto, Japan), and on special stands at Lausanne University (Switzerland) and in the Institut f¨ur Plasmaphysik, Association EURATOM-FZJ, FZ-J¨ulich (Germany).

References

R. Behrisch, G. Federichi, A. Kukushkin, and D. Reiter, J. Nucl. Mater. 313–316, 388 (2003). https://doi.org/10.1016/S0022-3115(02)01580-5

A.F. Bardamid, V.T. Gritsyna, V.G. Konovalov et al., Surf. Coat. Technol. 103-104, 365 (1998). https://doi.org/10.1016/S0257-8972(98)00421-6

A. Bardamid, V. Bryk, V. Konovalov et al., Vacuum 58, 10 (2000). https://doi.org/10.1016/S0042-207X(00)00227-X

M. Balden, A.F. Bardamid, A.I. Belyaeva et al., J. Nucl. Mater. 329-333, 1515 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.240

V.S. Voitsenya, M. Balden, A.I. Belyaeva et al., J. Nucl. Mater. 434, 375 (2013). https://doi.org/10.1016/j.jnucmat.2012.12.007

V.S. Voitsenya, M. Balden, A.F. Bardamid et al., Nucl. Instrum. Methods B 302, 32 (2013). https://doi.org/10.1016/j.nimb.2013.03.005

V. Voitsenya, A.E. Costley, V. Bandourko et al., Rev. Sci. Instrum. 72, 475 (2001). https://doi.org/10.1063/1.1310580

D.V. Orlinski, V.S. Voitsenya, and K.Yu. Vukolov, Plasma Dev. Oper. 15, 33 (2007). https://doi.org/10.1080/10519990601160075

M. Lipa, B. Schunke, Ch. Gil et al., Fusion Eng. Des. 81, 221 (2006). https://doi.org/10.1016/j.fusengdes.2005.07.017

A. Litnovsky, V. Voitsenya, T. Sugie et al., Nucl. Fusion 49, 075014 (2009). https://doi.org/10.1088/0029-5515/49/7/075014

V.S. Voitsenya, A.F. Bardamid, M.F. Becker et al., Rev. Sci. Instrum. 70, 790 (1999). https://doi.org/10.1063/1.1149402

A.F. Bardamid, K.Yu. Vukolov, V.G. Konovalov et al., Plasma Dev. Oper. 14, 159 (2006). https://doi.org/10.1080/10519990600673821

B. Eren, L. Marot, I.V. Ryzhkov et al., Nucl. Fusion 53, 113013 (2013). https://doi.org/10.1088/0029-5515/53/11/113013

V.S. Voitsenya, A.F. Bardamid, A.I. Belyaeva et al., Plasma Devices Oper. 17, 144 (2009). https://doi.org/10.1080/10519990902903595

A.F. Bardamid, V.S. Voitsenya, J.W. Davis et al., J. Alloys Comp. 514, 189 (2012). https://doi.org/10.1016/j.jallcom.2011.11.062

D. Peng, J. Shen, J. Sun, and Yu. Chen, Mater. Sci. Technol. 20, 157 (2004).

V.S. Voitsenya, A.F. Bardamid, V.N. Bondarenko et al., J. Nucl. Mater. 329–333, 1476 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.249

A.F. Bardamid, V.N. Bondarenko, J.W. Davis et al., J. Nucl. Mater. 405, 109 (2010). https://doi.org/10.1016/j.jnucmat.2010.07.039

V.G. Konovalov, M.N. Makhov, A.N. Shapoval et al., Probl. Atom. Sci. Technol. 59, 13 (2009).

A.F. Bardamid, A.I. Belyaeva, J.W. Davis et al., J. Nucl. Mater. 393, 473 (2009). https://doi.org/10.1016/j.jnucmat.2009.07.003

M. Kiene, T. Strunskus, G. Hasse, and F. Faupel, Mater. Res. Soc. Symp. Proc. 554, 167 (1999). https://doi.org/10.1557/PROC-554-167

V.S. Voitsenya, A.F. Bardamid, Yu.N. Borisenko et al., J. Nucl. Mater. 233–237, 1239 (1996). https://doi.org/10.1016/S0022-3115(96)00054-2

T. Nishitani, E. Ishitsuka, T. Kakuta et al., Fusion Eng. Des. 42, 443 (1998). https://doi.org/10.1016/S0920-3796(98)00159-8

H.E. Bennett, J. Opt. Soc. Am. 53, 1389 (1963). https://doi.org/10.1364/JOSA.53.001389

V.S. Voitsenya, A.F. Bardamid, A.I. Belyaeva et al., Plasma Devices Oper. 16, 1 (2008). https://doi.org/10.1080/10519990701688025

V.N. Bondarenko, A.F. Bardamid, V.G. Konovalov et al., Probl. At. Sci. Technol. Ser. Plasma Phys. 6, 80 (2006).

Published
2019-01-22
How to Cite
Voitsenya, V., & Bardamid, O. (2019). Behavior of Metallic Diagnostic Mirrors with Different Structures under Conditions Simulating Those in the ITER Fusion Reactor. Ukrainian Journal of Physics, 60(1), 32. https://doi.org/10.15407/ujpe60.01.0032
Section
Solid matter