Study of the Interaction of Atoms of the IV- and V-th Groups with Si(001) and Ge(001) Surfaces

  • T. V. Afanasieva Taras Shevchenko National University of Kyiv
Keywords: adsorption, diffusion, semiconductor surface, oxidation

Abstract

Adsorption and diffusion processes of atoms of the IV- (Si, Ge) and V-th (As, Sb, Bi) groups on the Si(001) and Ge(001) surfaces have been simulated, by using quantum chemistry techniques. The mechanism of how the adsorption of elements of the V-th group affects the Si(001) surface is considered. The literature concerning the adsorption of atoms of the V-th group (As, Sb, Bi) and their co-adsorption with oxygen on the Si(001) surface and the diffusion of Bi addimers on the Si(001) surface and Si and Ge ad-dimers on the Ge(001) one is analyzed. The results obtained demonstrate a high capability of quantum chemistry methods to provide the unique information about the interaction between adsorbates and the semiconductor surface.

References

F. Rochet, C. Poncey, G. Dufour et al., Surf. Sci. 326, 229 (1995). https://doi.org/10.1016/0039-6028(94)00793-4

I.P. Koval, Yu.A. Len and M.G. Nakhodkin, Nanosyst. Nanomater. Nanotekhnol. 3, 941 (2005).

I.P. Koval, V.V. Laposha, Yu.A. Len et al., Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky, N 4, 307 (2002).

I. Koval, P. Melnik, N. Nakhodkin et al., Surf. Sci. 384, L844 (1997). https://doi.org/10.1016/S0039-6028(97)00285-9

M.Yu. Pyatnitskii, I.F. Koval', P.V. Mel'nik et al., Teor. Eksp. Khim. 33, 124 (1997).

M.W. Schmidt, K.K. Baldridge, J.A. Boatz et al., J. Comput. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112

R.A. Wolkow, Phys. Rev. Lett. 68, 2636 (1992). https://doi.org/10.1103/PhysRevLett.68.2636

Y. Kondo, T. Amakusa, M. Iwatsuki et al., Surf. Sci. 453, L318 (2000). https://doi.org/10.1016/S0039-6028(00)00391-5

K. Hata, S. Yoshida, and H. Shigekawa, Phys. Rev. Lett. 89, 286104 (2002). https://doi.org/10.1103/PhysRevLett.89.286104

S.B. Healy, C. Filippi, P. Kratzer et al., Phys. Rev. Lett. 87, 016105 (2001). https://doi.org/10.1103/PhysRevLett.87.016105

Y. Jung, Y. Shao, M.S. Gordon et al., J. Chem. Phys. 119, 10917 (2003). https://doi.org/10.1063/1.1620994

R.M. Olson and M.S. Gordon, J. Chem. Phys. 124, 081105 (2006). https://doi.org/10.1063/1.2176611

S.J. Jenkins and G.P. Srivastava, J. Phys. Condens. Matter 8, 6641 (1996). https://doi.org/10.1088/0953-8984/8/36/016

M.S. Gordon, M.W. Schmidt, G.M. Chaban et al., Chem. Phys. 110, 4199 (1999).

S.C.A. Gay and G.P. Srivastava, Phys. Rev. B 60, 1488 (1999). https://doi.org/10.1103/PhysRevB.60.1488

H. Tamura and M.S. Gordon, J. Chem. Phys. 119, 10318 (2003). https://doi.org/10.1063/1.1617973

H.M. Tutuncu, G.P. Srivastava, and T.T. Guzelsoy, Surf. Sci. 566–568, 900 (2004). https://doi.org/10.1016/j.susc.2004.06.135

P. Kruger and J. Pollmann, Phys. Rev. Lett. 74, 1155 (1995). https://doi.org/10.1103/PhysRevLett.74.1155

K. Sakamoto, K. Kyoya, K. Miki et al., Jpn. J. Appl. Phys. 32, L204 (1993). https://doi.org/10.1143/JJAP.32.L204

A.G. Mark, J.A. Lipton-Duffin, J.M. MacLeod et al., J. Phys. Condens. Matter. 17, 571 (2005). https://doi.org/10.1088/0953-8984/17/4/001

I.F. Koval, P.V. Melnik, N.G. Nakhodkin et al., Surf. Sci. 331–333, 585 (1995). https://doi.org/10.1016/0039-6028(95)00322-3

M.Yu. Pyatnitskii, I.F. Koval', P.V. Mel'nik et al., Teor. Eksp. Khim. 32 168 (1996).

D.H. Rich, F.M. Leibsle, A. Samsavar et al., Phys. Rev. B 39, 12758 (1989). https://doi.org/10.1103/PhysRevB.39.12758

B.S. Swartzentruber, A.P. Smith, and H. Jonsson, Phys. Rev. Lett. 77, 2518 (1996). https://doi.org/10.1103/PhysRevLett.77.2518

H.J.W. Zandvliet, B. Poelsema, and B.S. Swartzentruber, Phys. Today 54, 40 (2001). https://doi.org/10.1063/1.1397393

Z. Zhang, F. Wu, H.J.W. Zandvliet et al., Phys. Rev. Lett. 74, 3644 (1995). https://doi.org/10.1103/PhysRevLett.74.3644

H.J.W. Zandvliet, T.M. Galea, E. Zoethout et al., Phys. Rev. Lett. 84, 1523 (2000). https://doi.org/10.1103/PhysRevLett.84.1523

T.M. Galea, C. Ordas, E. Zoethout et al., Phys. Rev. B 62, 7206 (2000). https://doi.org/10.1103/PhysRevB.62.7206

W. Wulfhekel, B.J. Hattink, H.J.W. Zandvliet et al., Phys. Rev. Lett. 79, 2494 (1997). https://doi.org/10.1103/PhysRevLett.79.2494

E. Zoethout, H.J.W. Zandvliet, W. Wulfhekel et al., Phys. Rev. B 58, 16167 (1998). https://doi.org/10.1103/PhysRevB.58.16167

Y.W. Mo, Science 261, 886 (1993). https://doi.org/10.1126/science.261.5123.886

M. Naitoh, M. Takei, S. Nishigaki et al., Surf. Sci. 482– 485, 1440 (2001).

S.Yu. Bulavenko, I.F. Koval, P.V. Melnik et al., Surf. Sci. 507–510, 119 (2002). https://doi.org/10.1016/S0039-6028(02)01186-X

S.Yu. Bulavenko, I.F. Koval, P.V. Melnik et al., Surf. Sci. 482–485, 370 (2001). https://doi.org/10.1016/S0039-6028(01)00804-4

M. Naitoh, H. Shimaya, S. Nishigaki et al., Appl. Surf. Sci. 142, 38 (1999). https://doi.org/10.1016/S0169-4332(98)00635-7

J.H.G. Owen, K. Miki, and D.R. Bowler, J. Mater. Sci. 41, 4568 (2006). https://doi.org/10.1007/s10853-006-0246-x

S. Rogge, R.H. Timmerman, P.M.L.O. Scholte et al., Phys. Rev. B 62, 15341 (2000). https://doi.org/10.1103/PhysRevB.62.15341

K. Chuasiripattana and G.P. Srivastava, Phys. Rev. B 71, 153312 (2005). https://doi.org/10.1103/PhysRevB.71.153312

T. Afanasieva, I. Koval, M. Nakhodkin, in Proceed. of the Int. Sci. Conference "Physical and Chemical Principles of Formation and Modification of Micro- and Nanostructures" (FMMN'2008), Kharkiv, Ukraine, 8–10 October 2008, Vol. 2, p. 471.

X.R. Qin and B.S. Swartzentruber, Phys. Rev. Lett. 842, 4645 (2000). https://doi.org/10.1103/PhysRevLett.84.4645

L.M. Sanders, R. Stumpf, T.R. Mattsson et al., Phys. Rev. Lett. 91, 206104 (2003). https://doi.org/10.1103/PhysRevLett.91.206104

C.C. Fu, M. Weissmann, and A. Saul, Surf. Sci. 481, 97 (2001). https://doi.org/10.1016/S0039-6028(01)01002-0

B.S. Swartzentruber, Phys. Rev. Lett. 76, 459 (1996). https://doi.org/10.1103/PhysRevLett.76.459

B. Borovsky, M. Krueger, and E. Ganz, Phys. Rev. Lett. 78, 4229 (1997). https://doi.org/10.1103/PhysRevLett.78.4229

Z.Y. Lu, F. Liu, C.Z. Wang et al., Phys. Rev. Lett. 85, 5603 (2000). https://doi.org/10.1103/PhysRevLett.85.5603

Z.Y. Lu, C.Z. Wang, and K.M. Ho, Phys. Rev. B 62, 8104 (2000). https://doi.org/10.1103/PhysRevB.62.8104

T.V. Afanasieva, S.Yu. Bulavenko, I.F. Koval et al., J. Appl. Phys. 93, 1452 (2003). https://doi.org/10.1063/1.1533107

T.R. Mattsson, B.S. Swartzentruber, R. Stumpf et al., Surf. Sci. 536, 121 (2003). https://doi.org/10.1016/S0039-6028(03)00565-X

T. Afanasieva, I. Koval, M. Nakhodkin, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky, N 1, 207 (2007).

T.V. Afanasieva, I.F. Koval, N.G. Nakhodkin et al., Surf. Sci. 482-485, 702 (2001). https://doi.org/10.1016/S0039-6028(01)00805-6

T. Afanasieva, I. Koval, M. Nakhodkin, in Proceed. of the Int. Sci. Conference "Physical and Chemical Principles of Formation and Modification of Micro- and Nanostructures" (FMMN'2010), Kharkiv, Ukraine, 6–8 October 2010, Vol. 2, p. 484.

T.V. Afanasieva, A.A. Greenchuck, I.P. Koval et al., Ukr. Fiz. Zh. 56, 240 (2011).

T.V. Afanasieva, I.F. Koval, and N.G. Nakhodkin, Surf. Sci. 507-510C, 788 (2002).

T. Hanada and M. Kawai, Surf. Sci. 242, 137 (1991). https://doi.org/10.1016/0039-6028(91)90255-Q

J.K. Cho, M.H. Kang, K. Terakura, Phys. Rev. B 55, 15464 (1997). https://doi.org/10.1103/PhysRevB.55.15464

G. Li and Y.C. Chang, Phys. Rev. B 50, 8675 (1994). https://doi.org/10.1103/PhysRevB.50.8675

T.V. Afanasieva, I.F. Koval, Yu.A. Len et al., Ukr. Fiz. Zh. 50, 685 (2005).

T.V. Afanasieva, V.O. Glavadski, I.F. Koval et al., Ukr. Fiz. Zh. 46, 1280 (2001).

Published
2019-01-22
How to Cite
Afanasieva, T. (2019). Study of the Interaction of Atoms of the IV- and V-th Groups with Si(001) and Ge(001) Surfaces. Ukrainian Journal of Physics, 60(2), 130. https://doi.org/10.15407/ujpe60.02.0130
Section
Nanosystems