Microwave Signal Sources Based on Spin-Torque Nano-Oscillators

  • O. V. Prokopenko Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
Keywords: spin-transfer torque, spin-torque nano-oscillator, microwave signal source


The spin-transfer torque (STT) effect provides a new method of manipulating the magnetization in nano-scale objects. According to the STT effect, a bias dc current traversing magnetic multilayers can transfer angular magnetic moments from one layer to another, which can give rise to the microwave dynamics of magnetization in the layer. This phenomenon can be used to develop novel microwave signal sources (MSSs). In this work, we review the main research results on MSSs based on the STT effect obtained at Taras Shevchenko National University of Kyiv and its foreign collaborating institutions in the recent years.


L. Berger, Phys. Rev. B 54, 9353 (1996). https://doi.org/10.1103/PhysRevB.54.9353

J.C. Slonczewski, J. Magn. Magn. Mat. 159, L1 (1996). https://doi.org/10.1016/0304-8853(96)00062-5

J.A. Katine, F.J. Albert, R.A. Buhrman et al., Phys. Rev. Lett. 84, 3149 (2000). https://doi.org/10.1103/PhysRevLett.84.3149

M. Tsoi, A.M.G. Jansen, J. Bass et al., Phys. Rev. Lett. 80, 4281 (1998). https://doi.org/10.1103/PhysRevLett.80.4281

S.I. Kiselev, J.C. Sankey, I.N. Krivorotov et al., Nat. 425, 380 (2003). https://doi.org/10.1038/nature01967

S. Kaka, M.R. Pufall, W.H. Rippard et al., Nat. 437, 389 (2005). https://doi.org/10.1038/nature04035

K.J. Lee, A. Deac, O. Redon et al., Nat. Mater. 3, 877 (2004). https://doi.org/10.1038/nmat1237

I.N. Krivorotov, N.C. Emley, J.C. Sankey et al., Sci. 307, 228 (2005). https://doi.org/10.1126/science.1105722

F.B. Mancoff, N.D. Rizzo, B.N. Engel, and S. Tehrani, Nat. 437, 393 (2005). https://doi.org/10.1038/nature04036

D. Houssameddine, U. Ebels, B. Dela?et et al., Nat. Mater. 6, 447 (2007). https://doi.org/10.1038/nmat1905

A. Ruotolo, V. Cros, B. Georges et al., Nat. Nanotech. 4, 528 (2009). https://doi.org/10.1038/nnano.2009.143

A.A. Tulapurkar, Y. Suzuki, A. Fukushima et al., Nat. 438, 339 (2005). https://doi.org/10.1038/nature04207

O.V. Prokopenko et al., in Magnonics: From Fundamentals to Applications. Topics in Applied Physics, edited by S.O. Demokritov and A.N. Slavin (Springer, Berlin, 2013).

J.C. Sankey, Y. Cui, J.Z. Sun, J.C. Slonczewski, R.A. Buhrman, and D.C. Ralph, Nature Phys. 4, 67 (2008). https://doi.org/10.1038/nphys783

D.C. Ralph and M.D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008). https://doi.org/10.1016/j.jmmm.2007.12.019

A.M. Pogorilyi, S.M. Ryabchenko, and O.I. Tovstolytkin, Ukr. Fiz. Zh. Oglyady 6, 37 (2010).

Handbook of Spin Transport and Magnetism, edited by E.Y. Tsymbal and I. Zuti?c (CRC Press, New York, 2012). ?

A. Slavin and V. Tiberkevich, IEEE Trans. Magn. 45, 1875 (2009). https://doi.org/10.1109/TMAG.2008.2009935

O. Prokopenko, E. Bankowski, T. Meitzler et al., IEEE Magn. Lett. 2, 3000104 (2011). https://doi.org/10.1109/LMAG.2010.2102007

N. Amin, H. Xi, and M.X. Tang, IEEE Trans. Magn. 45, 4183 (2009). https://doi.org/10.1109/TMAG.2009.2022489

V. Tiberkevich, A. Slavin, E. Bankowski, and G. Gerhart, Appl. Phys. Lett. 95, 262505 (2009). https://doi.org/10.1063/1.3278602

S. Ramo, J.R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1984).

B. Georges, J. Grollier, V. Cross, and A. Fert, Appl. Phys. Lett. 92, 232504 (2008). https://doi.org/10.1063/1.2945636

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: a Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, Cambridge, 2007).

J.A. Katine and E.E. Fullerton, J. Magn. Magn. Mater. 320, 1217 (2008). https://doi.org/10.1016/j.jmmm.2007.12.013

P.M. Braganca, B.A. Gurney, B.A. Wilson et al., Nanotech. 21, 235202 (2010). https://doi.org/10.1088/0957-4484/21/23/235202

I. Firastrau, D. Gusakova, D. Houssameddine et al., Phys. Rev. B 78, 024437 ( 2008). https://doi.org/10.1103/PhysRevB.78.024437

G. Rowlands and I. Krivorotov, Abstracts of the 2009 APS March Meeting, BAPS.2009.MAR.W29.7, Pittsburgh, PA (2009).

O.V. Prokopenko, I.N. Krivorotov, E.N. Bankowski et al., J. Appl. Phys. 114, 173904 (2013). https://doi.org/10.1063/1.4828866

G.E. Rowlands, and I.N. Krivorotov, Phys. Rev. B 86, 094425 (2012). https://doi.org/10.1103/PhysRevB.86.094425

A.D. Kent, B. Ozyilmaz, and E. del Barco, Appl. Phys. Lett. 84, 3897 (2004). https://doi.org/10.1063/1.1739271

A.G. Gurevich and G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, New York, 1996).

O. Dmytriiev, T. Meitzler, E. Bankowski et al., J. Phys.: Condens. Matter 22, 136001 (2010). https://doi.org/10.1088/0953-8984/22/13/136001

O.V. Prokopenko, V.S. Tiberkevich and A.N. Slavin, Funct. Mater. 21, 206 (2014). https://doi.org/10.15407/fm21.02.206

K.Y. Guslienko, J. Nanosci. Nanotechn. 8, 2745 (2008).

V.S. Pribiag, I.N. Krivorotov, G.D. Fuchs et al., Nat. Phys. 3, 498 (2007). https://doi.org/10.1038/nphys619

A. Dussaux, B. Georges, J. Grollier et al., Nat. Commun. 1, 8 (2010). https://doi.org/10.1038/ncomms1006

A. Dussaux, A.V. Khvalkovskiy, J. Grollier et al., Appl. Phys. Lett. 98, 132506 (2011). https://doi.org/10.1063/1.3565159

A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973). https://doi.org/10.1103/PhysRevLett.30.230

K.Y. Guslienko, A.N. Slavin, V. Tiberkevich, and S.K. Kim, Phys. Rev. Lett. 101, 247203 (2008). https://doi.org/10.1103/PhysRevLett.101.247203

K.Y. Guslienko, G.R. Aranda, and J. Gonzalez, J. Phys.: Conf. Ser. 292, 12006 (2011). https://doi.org/10.1088/1742-6596/292/1/012006

A. Dussaux, A.V. Khvalkovskiy, P. Bortolotti et al., Phys. Rev. B 86, 014402 (2012). https://doi.org/10.1103/PhysRevB.86.014402

F. Sanches, V. Tiberkevich, K.Y. Guslienko et al., Phys. Rev. B. 89, 140410(R) (2014).

M. Quinsat, V. Tiberkevich, D. Gusakova et al., Phys. Rev. B 86, 104418 (2012). https://doi.org/10.1103/PhysRevB.86.104418

How to Cite
Prokopenko, O. (2019). Microwave Signal Sources Based on Spin-Torque Nano-Oscillators. Ukrainian Journal of Physics, 60(2), 104. https://doi.org/10.15407/ujpe60.02.0104
Solid matter