Non-Smooth Chemical Freeze-Out and Apparent Width of Wide Resonances and Quark Gluon Bags in a Thermal Environment

  • K. A. Bugaev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A. I. Ivanytskyi Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • D. R. Oliinychenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine, FIAS, Goethe-University
  • E. G. Nikonov Laboratory for Information Technologies, JINR
  • V. V. Sagun Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • G. M. Zinovjev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: chemical freeze-out, wide resonance enhancement, width sharpening

Abstract

We develop a hadron resonance gas model with the Gaussian width of hadron resonances. This model allows us to treat the usual hadrons and the quark gluon bags on the same footing and to study the stability of the results obtained within different formulations of the hadron resonance gas model. We perform a successful fit of 111 independent hadronic multiplicity ratios measured in nuclear collisions at the center-of-mass energies √SNN = 2.7–200 GeV. We demonstrate also that, in a narrow range of the collision energy √SNN = 4.3–4.9 GeV, there exist the peculiar irregularities in various thermodynamic quantities found at the chemical freeze-out. The most remarkable irregularity is an unprecedented jump of the number of effective degrees of freedom observed in this narrow energy range, which is seen in all realistic versions of the hadron resonance gas model, including the model with the Breit–Wigner parametrization of the resonance width and the one with a zero width of all resonances. Therefore, the developed concept is called the non-smooth chemical freeze-out. We are arguing that these irregularities evidence the possible formation of quark gluon bags. In order to develop other possible signals of their formation, we study the apparent width of wide hadronic resonances and quark gluon bags in a thermal environment. Two new effects generated for the wide resonances and the quark gluon bags by a thermal medium are discussed here: the near-threshold thermal resonance enhancement and the near-threshold thermal resonance sharpening. These effects are also analyzed for the Breit–Wigner width parametrization. It is shown that, if the resonance decay thresholds are located far away from the peak of the resonance mass attenuation, then such a width parametrization leads to a stronger enhancement of the resonance pressure, as compared with the Gaussian one. On the basis of the new effects, we argue that the most optimistic chance to find experimentally the quark gluon bags may be related to their sharpening and enhancement in a thermal medium. In this case, the wide quark gluon bags can appear directly or in decays as narrow resonances that are absent in the tables of elementary particles and have the apparent width about 50–120 MeV and the mass about or above 2.5 GeV.

References

A. Chodos et al., Phys. Rev. D 9, 3471 (1974).

http://dx.doi.org/10.1103/PhysRevD.9.3471

J.I. Kapusta, Phys. Rev. D 10, 2444 (1981).

http://dx.doi.org/10.1103/PhysRevD.23.2444

R. Hagedorn, Suppl. Nuovo Cimento 3, 147 (1965).

R. Hagedorn and J. Ranft, Suppl. Nuovo Cimento 6, 169 (1968).

C.J. Hamer and S.C. Frautschi, Phys. Rev. D 4, 2125 (1971).

http://dx.doi.org/10.1103/PhysRevD.4.2125

K.A. Bugaev, Phys. Rev. C 76, 014903 (2007).

http://dx.doi.org/10.1103/PhysRevC.76.014903

K.A. Bugaev, Phys. Atom. Nucl. 71, 1615 (2008).

http://dx.doi.org/10.1134/S1063778808090147

K.A. Bugaev, Phys. Part. Nucl. 38, 447 (2007).

http://dx.doi.org/10.1134/S1063779607040028

A.I. Ivanytskyi, Nucl. Phys. A 880, 12 (2012).

http://dx.doi.org/10.1016/j.nuclphysa.2012.02.004

K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Phys. Part. Nucl. Lett. 9, 397 (2012); and Phys. Atom. Nucl. 76, 341 (2013).

A.I. Ivanytskyi, K.A. Bugaev, A.S. Sorin, and G.M. Zinovjev, Phys. Rev. E 86, 061107 (2012).

http://dx.doi.org/10.1103/PhysRevE.86.061107

I. Zakout, C. Greiner, and J. Schaffner-Bielich, Nucl. Phys. A 781, 150 (2007) and references therein.

http://dx.doi.org/10.1016/j.nuclphysa.2006.10.064

I. Zakout and C. Greiner, Phys. Rev. C 78, 034916 (2008).

http://dx.doi.org/10.1103/PhysRevC.78.034916

I. Zakout and C. Greiner, arXiv:1002.3119 [nucl-th].

L. Ferroni and V. Koch, Phys. Rev. C 79, 034905 (2009).

http://dx.doi.org/10.1103/PhysRevC.79.034905

K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Europhys. Lett. 85, 22002 (2009).

http://dx.doi.org/10.1209/0295-5075/85/22002

K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Phys. Rev. C 79, 054913 (2009).

http://dx.doi.org/10.1103/PhysRevC.79.054913

D.B. Blaschke and K.A. Bugaev, Fizika B13, 491 (2004);

Prog. Part. Nucl. Phys. 53, 197 (2004);

http://dx.doi.org/10.1016/j.ppnp.2004.02.039

Phys. Part. Nucl. Lett. 2, 305 (2005).

J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993).

http://dx.doi.org/10.1007/BF01555746

A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772, 167 (2006) and references therein.

http://dx.doi.org/10.1016/j.nuclphysa.2006.03.012

A. Andronic, P. Braun-Munzinger, and J. Stachel, Phys. Lett. B 673, 142 (2009);; Erratum-ibid. 678, 516 (2009) and references therein.

D.R. Oliinychenko, K.A. Bugaev, and A.S. Sorin, Ukr. J. Phys. 58, 211 (2013);

http://dx.doi.org/10.15407/ujpe58.03.0211

Ukr. J. Phys. 58, 939 (2013).

http://dx.doi.org/10.15407/ujpe58.10.0939

K.A. Bugaev, D.R. Oliinychenko, A.S. Sorin, and G.M. Zinovjev, Eur. Phys. J. A 49, 30 (2013).

http://dx.doi.org/10.1140/epja/i2013-13030-y

K.A. Bugaev et al., Europhys. Lett. 104, 22002 (2013).

http://dx.doi.org/10.1209/0295-5075/104/22002

J. Stachel, A. Andronic, P. Braun-Munzinger, and K. Redlich, arXive:1311.4662v1 [nucl-th].

C. Amsler et al., Phys. Lett. B 667, 1 (2008) [http://pdg.lbl.gov].

http://dx.doi.org/10.1016/j.physletb.2008.07.018

K.A. Bugaev and G.M. Zinovjev, Ukr. J. Phys. 55, 586 (2010).

V.V. Sagun, A.I. Ivanytskyi, K.A. Bugaev, and I.N. Mishustin, Nucl. Phys. A 924, 24 (2014).

http://dx.doi.org/10.1016/j.nuclphysa.2013.12.012

W. Broniowski, W. Florkowski, and L.Y. Glozman, Phys. Rev. D 70, 117503 (2004).

http://dx.doi.org/10.1103/PhysRevD.70.117503

A. Andronic, P. Braun-Munzinger, and J. Stachel, Acta Phys. Polon. B 40, 1005 (2009).

J. Cleymans and D. Worku, Mod. Phys. Lett. A 26, 1197 (2011).

http://dx.doi.org/10.1142/S0217732311035584

D. Hahn and H. St¨ocker, Nucl. Phys. A 452, 723 (1986).

http://dx.doi.org/10.1016/0375-9474(86)90223-X

K.G. Denisenko and St. Mrowczynski, Phys. Rev. C 35, 1932 (1987).

http://dx.doi.org/10.1103/PhysRevC.35.1932

M.I. Gorenstein, St. Mrowczynski, and D.H. Rischke, Phys. Lett. B 243, 327 (1990).

http://dx.doi.org/10.1016/0370-2693(90)91392-O

J. Sollfrank, P. Koch, and U. Heinz, Z. Phys. C 52, 593 (1991).

http://dx.doi.org/10.1007/BF01562334

K.A. Bugaev, M.I. Gorenstein, and D.H. Rischke, Phys. Lett. B 255, 18 (1991).

http://dx.doi.org/10.1016/0370-2693(91)91132-F

K.A. Bugaev, E.G. Nikonov, A.S. Sorin, and G.M. Zinovjev, JHEP 02, 059 (2011);

Ukr. J. Phys. 56, 611 (2011).

S. Wheaton, J. Cleymans, and M. Hauer, Comput. Phys. Commun., 180, 84 (2009).

http://dx.doi.org/10.1016/j.cpc.2008.08.001

W. Weinhold, B. Friman, and W. N¨orenberg, Phys. Lett. B 433, 236 (1998).

http://dx.doi.org/10.1016/S0370-2693(98)00639-X

H. van Hees and R. Rapp, Phys. Lett. B 606, 59 (2005).

http://dx.doi.org/10.1016/j.physletb.2004.10.062

M. Effenberger, E.L. Bratkovskaya, and U. Mosel, Phys. Rev. C 60, 044614 (1999).

http://dx.doi.org/10.1103/PhysRevC.60.044614

M. Effenberger and U. Mosel, Phys. Rev. C 60, 051901 (1999);

http://dx.doi.org/10.1103/PhysRevC.60.051901

A.B. Larionov and U. Mosel, Phys. Rev. C 66, 034902 (2002).

http://dx.doi.org/10.1103/PhysRevC.66.034902

V.I. Kuksa, Phys. Part. Nucl. (in Russian) 45, 998 (2014) and references therein.

http://dx.doi.org/10.1134/S106377961403006X

J.L. Klay et al., Phys. Rev. C 68, 054905 (2003).

http://dx.doi.org/10.1103/PhysRevC.68.054905

L. Ahle et al., Phys. Lett. B 476, 1 (2000);

http://dx.doi.org/10.1016/S0370-2693(00)00037-X

Phys. Lett. B 490, 53 (2000).

http://dx.doi.org/10.1016/S0370-2693(00)00916-3

B.B. Back et al., Phys. Rev. Lett. 86, 1970 (2001).

http://dx.doi.org/10.1103/PhysRevLett.86.1970

J.L. Klay et al., Phys. Rev. Lett. 88, 102301 (2002).

http://dx.doi.org/10.1103/PhysRevLett.88.102301

C. Pinkenburg et al., Nucl. Phys. A 698, 495c (2002).

http://dx.doi.org/10.1016/S0375-9474(01)01412-9

P. Chung et al., Phys. Rev. Lett. 91, 202301 (2003).

http://dx.doi.org/10.1103/PhysRevLett.91.202301

S. Albergo et al., Phys. Rev. Lett. 88, 062301 (2002).

http://dx.doi.org/10.1103/PhysRevLett.88.062301

B.B. Back et al., Phys. Rev. Lett. 87, 242301 (2001).

http://dx.doi.org/10.1103/PhysRevLett.87.242301

B.B. Back et al., Phys. Rev. C 69, 054901 (2004).

http://dx.doi.org/10.1103/PhysRevC.69.054901

S.V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002).

http://dx.doi.org/10.1103/PhysRevC.66.054902

S.V. Afanasiev et al., Phys. Rev. C 69, 024902 (2004).

http://dx.doi.org/10.1103/PhysRevC.69.024902

T. Anticic et al., Phys. Rev. Lett. 93, 022302 (2004).

http://dx.doi.org/10.1103/PhysRevLett.93.022302

S.V. Afanasiev et al., Phys. Lett. B 538, 275 (2002).

http://dx.doi.org/10.1016/S0370-2693(02)01970-6

C. Alt et al., Phys. Rev. Lett. 94, 192301 (2005).

http://dx.doi.org/10.1103/PhysRevLett.94.192301

S.V. Afanasiev et al., Phys. Lett. B 491, 59 (2000).

http://dx.doi.org/10.1016/S0370-2693(00)01023-6

J. Adams et al., Phys. Rev. Lett. 92, 182301 (2004).

http://dx.doi.org/10.1103/PhysRevLett.92.182301

J. Adams et al., Phys. Lett. B 567, 167 (2003).

http://dx.doi.org/10.1016/j.physletb.2003.06.039

C. Adler et al., Phys. Rev. C 65, 041901(R) (2002).

J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004).

http://dx.doi.org/10.1103/PhysRevLett.92.112301

J. Adams et al., Phys. Lett. B 612, 181 (2005).

http://dx.doi.org/10.1016/j.physletb.2004.12.082

A. Billmeier et al., J. Phys. G 30, S363 (2004).

http://dx.doi.org/10.1088/0954-3899/30/1/043

K.A. Bugaev et al., arXiv:1405.3575 [hep-ph] (accepted to Phys. Part. Nucl. Lett.).

M. Gazdzicki and M.I. Gorenstein, Acta Phys. Polon. B 30, 2705 (1999).

see, e.g., J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 73, 034905 (2006).

http://dx.doi.org/10.1103/PhysRevC.73.034905

V.V. Begun, M. Gazdzicki, and M.I. Gorenstein, Phys. Rev. C 88, 024902 (2013).

http://dx.doi.org/10.1103/PhysRevC.88.024902

V.V. Begun, M. Gazdzicki, and M.I. Gorenstein, Contribution 2.8 to the NICA White Paper, version 9.02, 7 of June, 2013. http://theor.jinr.ru/twiki/pub/NICA/ NICAWhitePaper.

M. Gazdzicki, Z. Phys. C 66, 659 (1995);

http://dx.doi.org/10.1007/BF01579641

J. Phys. G 23, 1881 (1997).

http://dx.doi.org/10.1088/0954-3899/23/12/012

M.I. Gorenstein, M. Gazdzicki, and K.A. Bugaev, Phys. Lett. B 567, 175 (2003).

http://dx.doi.org/10.1016/j.physletb.2003.06.043

M. Gazdzicki, M. Gorenstein, and P. Seyboth, Acta Phys. Polon. B 42, 307 (2011).

http://dx.doi.org/10.5506/APhysPolB.42.307

J. Engels, F. Karsch, J. Montway, and H. Satz, Nucl. Phys. B 205, 545 (1982).

http://dx.doi.org/10.1016/0550-3213(82)90077-3

T. Celik, J. Engels, and H. Satz, Nucl. Phys. B 256, 670 (1985).

http://dx.doi.org/10.1016/0550-3213(85)90414-6

M. Cheng et al., Phys. Rev. D 77, 014511 (2008).

http://dx.doi.org/10.1103/PhysRevD.77.014511

BNL-Bielefeld Collaboration, Phys. Rev. D 83, 014504 (2011).

http://dx.doi.org/10.1103/PhysRevD.83.014504

C.S. Rolfs and W.S. Rodney, Cauldrons in the Cosmos (Univ. of Chicago Press, Chicago, 1986).

C. Iliadis, Nuclear Physics of Stars (Wiley-VCH, Weinheim, 2007).

http://dx.doi.org/10.1002/9783527618750

R. Garcia-Martin, J.R. Pelaez, and F.J. Yndurain, Phys. Rev. D 76, 074034 (2007).

http://dx.doi.org/10.1103/PhysRevD.76.074034

F. Karsch, Prog. Theor. Phys. Suppl. 168, 237 (2007).

http://dx.doi.org/10.1143/PTPS.168.237

Y. Aoki et al., Phys. Lett. B 643, 46 (2006);

http://dx.doi.org/10.1016/j.physletb.2006.10.021

Y. Aoki et al., JHEP 06, 088 (2009).

Published
2019-01-21
How to Cite
Bugaev, K., Ivanytskyi, A., Oliinychenko, D., Nikonov, E., Sagun, V., & Zinovjev, G. (2019). Non-Smooth Chemical Freeze-Out and Apparent Width of Wide Resonances and Quark Gluon Bags in a Thermal Environment. Ukrainian Journal of Physics, 60(3), 181. https://doi.org/10.15407/ujpe60.03.0181
Section
Fields and elementary particles