On the Phase Diagram of the 2d Ising Model with Frustrating Dipole Interaction

  • P. Sarkanych Department for Theoretical Physics, Ivan Franko National University of Lviv, Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine
  • Yu. Holovatch Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine
  • R. Kenna Applied Mathematics Research Centre, Coventry University
Keywords: frustrations, phase transition, density of partition function zeros, critical exponents

Abstract

Due to intrinsic frustrations of interaction, the 2d Ising model with competing ferromagnetic short-range nearest-neighbour and antiferromagnetic long-range dipole interactions possesses a rich phase diagram. The order of the phase transition from the striped h = 1 phase to the tetragonal phase that is observed in this model has been a subject of recent controversy. We address this question by using the partition function density analysis in the complex temperature plane. Our results support the second-order phase transition scenario. To measure the strength of the phase transition, we calculate the values of specific heat critical exponent a. Along with the space dimension, it appears to depend on the ratio of strengths of the short-range and long-range interactions.

References

A. Giuliani, J.L. Lebowitz, and E.H. Lieb, Phys. Rev. B 74, 064420 (2006).

http://dx.doi.org/10.1103/PhysRevB.74.064420

D. Pescia and V.L. Pokrovsky, Phys. Rev. Lett. 65, 2599 (1990).

http://dx.doi.org/10.1103/PhysRevLett.65.2599

A.B. MacIsaac, J.P. Whitehead, M.C. Robinson, and K. De'Bell, Phys. Rev. B 51, 16033 (1995).

http://dx.doi.org/10.1103/PhysRevB.51.16033

Ar. Abanov, V. Kalatsky, V.L. Pokrovsky, and W.M. Saslow, Phys. Rev. B 51, 1023 (1995).

http://dx.doi.org/10.1103/PhysRevB.51.1023

I. Booth, A.B. MacIsaac, J.P. Whitehead, and K. De'Bell, Phys. Rev. Lett. 75, 950 (1995).

http://dx.doi.org/10.1103/PhysRevLett.75.950

A. Vaterlaus et al., Phys. Rev. Lett. 84, 2247 (2000).

http://dx.doi.org/10.1103/PhysRevLett.84.2247

S.A. Cannas, D.A. Stariolo, and F.A. Tamarit, Phys. Rev. B 69, 092409 (2004).

http://dx.doi.org/10.1103/PhysRevB.69.092409

A.B. Kashuba and V.L. Pokrovsky, Phys. Rev. B 48, 10335 (1993).

http://dx.doi.org/10.1103/PhysRevB.48.10335

P.M. Gleiser, F.A. Tamarit, and S.A. Cannas, Physica D 73, 168 (2002).

E. Rastelli, S. Regina, and A. Tassi, Phys. Rev. B 73, 144418 (2006).

http://dx.doi.org/10.1103/PhysRevB.73.144418

E. Rastelli, S. Regina, and A. Tassi, Phys. Rev. B 76, 054438 (2007).

http://dx.doi.org/10.1103/PhysRevB.76.054438

J.S.M. Fonseca, L.G. Rizzi, and N.A. Alves, Phys. Rev. E 86, 011103 (2012).

http://dx.doi.org/10.1103/PhysRevE.86.011103

M.E. Fisher, in: Lecture in Theoretical Physics, Vol. VIIC, ed. W.E. Brittin (Gordon and Breach, New York, 1968); p. 1.

W. Janke and R. Kenna, J. Stat. Phys. 102, 1211 (2001).

http://dx.doi.org/10.1023/A:1004836227767

A.B. MacIsaac, J.P. Whitehead, K. De'Bell, and K.S. Narayanan, Phys. Rev. B 46, 6387 (1992).

http://dx.doi.org/10.1103/PhysRevB.46.6387

C.N. Yang and T.D. Lee, Phys. Rev. 87, 404 (1952).

http://dx.doi.org/10.1103/PhysRev.87.404

R. Abe, Prog. Theor. Phys. 37, 1070 (1967);

http://dx.doi.org/10.1143/PTP.37.1070

Prog. Theor. Phys. 38, 72 (1967);

http://dx.doi.org/10.1143/PTP.38.72

Prog. Theor. Phys. 38, 322 (1967);

http://dx.doi.org/10.1143/PTP.38.322

Prog. Theor. Phys. 38, 568 (1967).

http://dx.doi.org/10.1143/PTP.38.568

M. Suzuki, Prog. Theor. Phys. 38, 289 (1967);

http://dx.doi.org/10.1143/PTP.38.289

Prog. Theor. Phys. 38, 1225 (1967);

http://dx.doi.org/10.1143/PTP.38.1225

Prog. Theor. Phys. 38, 1243 (1967);

http://dx.doi.org/10.1143/PTP.38.1243

Prog. Theor. Phys. 39, 349 (1968).

http://dx.doi.org/10.1143/PTP.39.349

C. Itzykson, R.B. Pearson, and J.B. Zuber, Nucl. Phys. B 220 [FS8], 415 (1983).

http://dx.doi.org/10.1016/0550-3213(83)90499-6

Published
2019-01-19
How to Cite
Sarkanych, P., Holovatch, Y., & Kenna, R. (2019). On the Phase Diagram of the 2d Ising Model with Frustrating Dipole Interaction. Ukrainian Journal of Physics, 60(4), 334. https://doi.org/10.15407/ujpe60.04.0334
Section
Solid matter