T-Matrix in Discrete Oscillator Representation

  • V. S. Vasilevsky Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • M. D. Soloha-Klymchak Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: T-matrix, oscillator basis, scattering, convergence

Abstract

We investigate T-matrix for bound and continuous-spectrum states in the discrete oscillator representation. The investigation is carried out for a model problem – the particle in the field of a central potential. A system of linear equations is derived to determine the coefficients of the T-matrix expansion in the oscillator functions. We selected four potentials (Gaussian, exponential, Yukawa, and square-well ones) to demonstrate peculiarities of the T-matrix and its dependence on the potential shape. We also study how the T-matrix expansion coefficients depend on the parameters of the oscillator basis such as the oscillator length and the number of basis functions involved in calculations.

References

G.F. Filippov and I.P. Okhrimenko, Sov. J. Nucl. Phys. 32, 480 (1981).

G.F. Filippov, Sov. J. Nucl. Phys. 33, 488 (1981).

E.J. Heller and H.A. Yamani, Phys. Rev. A 9, 1201 (1974).

http://dx.doi.org/10.1103/PhysRevA.9.1201

H.A. Yamani and L. Fishman, J. Math. Phys. 16, 410 (1975).

http://dx.doi.org/10.1063/1.522516

The J-Matrix Method. Developments and Applications, edited by A.D. Alhaidari, H.A. Yamani, E.J. Heller, and M.S. Abdelmonem (Springer, Berlin, 2008).

O.A. Rubtsova and V.I. Kukulin, Phys. At. Nucl. 64, 1799 (2001).

http://dx.doi.org/10.1134/1.1414928

F. Arickx, J. Broeckhove, P.V. Leuven, V. Vasilevsky, and G. Filippov, Amer. J. Phys. 62, 362 (1994).

http://dx.doi.org/10.1119/1.17579

V.S. Vasilevsky and F. Arickx, Phys. Rev. A 55, 265 (1997).

http://dx.doi.org/10.1103/PhysRevA.55.265

J. Broeckhove, V. Vasilevsky, F. Arickx, and A. Sytcheva, ArXiv Nuclear Theory e-prints, nucl-th/0412085 (2004).

J. Broeckhove, V.S. Vasilevsky, F. Arickx, and A.M. Sytcheva, in The J-Matrix Method. Developments and Applications, edited by A.D. Alhaidari, H.A. Yamani, E.J. Heller, and M.S. Abdelmonem (Springer, Berlin, 2008), p. 117.

http://dx.doi.org/10.1007/978-1-4020-6073-1_7

R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966).

H. Friedrich, Scattering theory (Springer, Berlin, 2013).

http://dx.doi.org/10.1007/978-3-642-38282-6

Y.I. Nechaev and Y.F. Smirnov, Sov. J. Nucl. Phys. 35, 808 (1982).

E.J. Heller, Phys. Rev. A 12, 1222 (1975).

http://dx.doi.org/10.1103/PhysRevA.12.1222

L.P. Kok, J.W. de Maag, H.H. Brouwer, and H. van Haeringen, Phys. Rev. C 26, 2381 (1982).

http://dx.doi.org/10.1103/PhysRevC.26.2381

T. Dolinszky, J. Phys. G. Nucl. Phys. 10, 1639 (1984).

http://dx.doi.org/10.1088/0305-4616/10/12/004

G.F. Filippov, V.S. Vasilevsky, and L.L. Chopovsky, Sov. J. Part. Nucl. 15, 600 (1984).

G.F. Filippov, V.S. Vasilevsky, and L.L. Chopovsky, Sov. J. Part. and Nucl. 16, 153 (1985).

F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, New York, 1967).

V.V. Babikov, Phase Function Method in Quantum Mechanics (Nauka, Moscow, 1976) (in Russian).

J. Broeckhove, F. Arickx, W. Vanroose, and V.S. Vasilevsky, J. Phys. A Math. Gen. 37, 7769 (2004).

http://dx.doi.org/10.1088/0305-4470/37/31/009

Published
2019-01-19
How to Cite
Vasilevsky, V., & Soloha-Klymchak, M. (2019). T-Matrix in Discrete Oscillator Representation. Ukrainian Journal of Physics, 60(4), 297. https://doi.org/10.15407/ujpe60.04.0297
Section
Nuclei and nuclear reactions