Chiral Asymmetry in Magnetized Dense Relativistic Matter and Pulsar Kicks

  • E. V. Gorbar Faculty of Physics, Taras Shevchenko National Kiev University, Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: dense relativistic matter, magnetic field, pulsar kick

Abstract

The weak interactions of neutrinos with charged fermions in a magnetized dense relativistic matter are shown to generate a non-zero chiral shift parameter for neutrinos that produces their asymmetric distribution in the momentum space in the equilibrium state. It is found that this asymmetry is too small in order to explain the largest pulsar velocities observed. The hot-spot scenario involving the topological current or some other mechanism of the hot spot formation is suggested, and it is argued that this scenario can provide the necessary large pulsar kicks.

References

P.M. Woods and C. Thompson, in Compact Stellar X-ray Sources, edited by W.H.G. Lewin and M. van der Klis, (Cambridge Univ. Press, Cambridge, 2006) p. 547 [astroph/0406133].

http://dx.doi.org/10.1017/CBO9780511536281.015

S. Mereghetti, Astron. Astrophys. Rev. 15, 225 (2008).

http://dx.doi.org/10.1007/s00159-008-0011-z

D. Page and S. Reddy, Ann. Rev. Nucl. Part. Sci. 56, 327 (2006).

http://dx.doi.org/10.1146/annurev.nucl.56.080805.140600

S. Chatterjee et al., Astrophys. J. 630, L61 (2005).

http://dx.doi.org/10.1086/491701

A. Vilenkin, Phys. Rev. D 22, 3080 (1980).

http://dx.doi.org/10.1103/PhysRevD.22.3080

M.A. Metlitski and A.R. Zhitnitsky, Phys. Rev. D 72, 045011 (2005).

http://dx.doi.org/10.1103/PhysRevD.72.045011

E.V. Gorbar, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. C 80, 032801(R) (2009).

A.G. Lyne and D.R. Lorimer, Nature 369, 127 (1994);

http://dx.doi.org/10.1038/369127a0

J.M. Cordes and D.F. Chernoff, Astrophys. J. 505, 315 (1998);

http://dx.doi.org/10.1086/306138

B.M.S. Hansen and E.S. Phinney, Mon. Not. Roy. Astron. Soc. 291, 569 (1997);

http://dx.doi.org/10.1093/mnras/291.3.569

C. Fryer, A. Burrows, and W. Benz, Astrophys. J. 496, 333 (1998);

http://dx.doi.org/10.1086/305348

Z. Arzoumanian, D.F. Chernoffs, and J.M. Cordes, Astrophys. J. 568, 289 (2002).

http://dx.doi.org/10.1086/338805

E.V. Gorbar, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. D 83, 085003 (2011).

http://dx.doi.org/10.1103/PhysRevD.83.085003

A. Kusenko, G. Segre, and A. Vilenkin, Phys. Lett. B 437, 359 (2008).

http://dx.doi.org/10.1016/S0370-2693(98)00918-6

I. Sagert and J. Schaffner-Bielich, J. Phys. G 35, 014062 (2008);

http://dx.doi.org/10.1088/0954-3899/35/1/014062

Astron. Astrophys. 489, 281 (2008).

http://dx.doi.org/10.1051/0004-6361:20078530

C.L. Fryer and A. Kusenko, Astrophys. J. Suppl. 163, 335 (2006).

http://dx.doi.org/10.1086/500933

J. Charbonneau and A. Zhitnitsky, Phys. Rev. C 76, 015801 (2007).

http://dx.doi.org/10.1103/PhysRevC.76.015801

J. Charbonneau and A. Zhitnitsky, JCAP 1008, 010 (2010).

G.M. Newman and D. Son, Phys. Rev. D 73, 045006 (2006).

http://dx.doi.org/10.1103/PhysRevD.73.045006

K. Fukushima, Lect. Notes Phys. 871, 241 (2013).

D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007).

http://dx.doi.org/10.1016/j.nuclphysa.2007.10.001

D.E. Kharzeev, L.D. McLerran, and H.J. Warringa, Nucl. Phys. A 803, 227 (2008).

http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298

D. Kharzeev, Phys. Lett. B 633, 260 (2006).

http://dx.doi.org/10.1016/j.physletb.2005.11.075

K. Fukushima, D.E. Kharzeev, and H.J. Warringa, Phys. Rev. D 78, 074033 (2008).

http://dx.doi.org/10.1103/PhysRevD.78.074033

B.I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 103, 251601 (2009);

http://dx.doi.org/10.1103/PhysRevLett.103.251601

Phys. Rev. C 81, 054908 (2010).

http://dx.doi.org/10.1103/PhysRevC.81.054908

L. Adamczyk et al. [STAR Collaboration], arXiv:1303.0901 [nucl-ex].

G. Wang [STAR Collaboration], arXiv:1210.5498 [nucl-ex].

H. Ke [STAR Collaboration], J. Phys. Conf. Ser. 389, 012035 (2012).

http://dx.doi.org/10.1088/1742-6596/389/1/012035

I. Selyuzhenkov [ALICE Collaboration], Prog. Theor. Phys. Suppl. 193, 153 (2012).

http://dx.doi.org/10.1143/PTPS.193.153

S.A. Voloshin, Phys. Rev. C 70, 057901 (2004).

http://dx.doi.org/10.1103/PhysRevC.70.057901

D.E. Kharzeev, Ann. Phys. 325, 205 (2010);

http://dx.doi.org/10.1016/j.aop.2009.11.002

K. Fukushima, D.E. Kharzeev, and H.J. Warringa, Nucl. Phys. A 836, 311 (2010).

http://dx.doi.org/10.1016/j.nuclphysa.2010.02.003

J. Charbonneau, K. Hoffman, and J. Heyl, Mon. Not. R. Astron. Soc. 404, L119 (2010).

http://dx.doi.org/10.1111/j.1745-3933.2010.00848.x

C.J. Horowitz and G. Li, Phys. Rev. Lett. 80, 3694 (1998); erratum-ibid. 81, 1985 (1998).

D. Lai and Y.-Z. Qian, Astrophys. J. 495, L103 (1998).

http://dx.doi.org/10.1086/311228

Ph. Arras and D. Lai, arXiv:astro-ph/9806285.

L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); ibid., 20, 2634 (1979).

S.P. Mikheyev and A.Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985);

Nuovo Cim. C 9, 17 (1986);

http://dx.doi.org/10.1007/BF02508049

Sov. Phys. JETP 64, 4 (1986).

M.C. Gonzalez-Garcia and Y. Nir, Rev. Mod. Phys. 75, 345 (2003).

http://dx.doi.org/10.1103/RevModPhys.75.345

C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980).

T.K. Kuo and J. Pantaleone, Rev. Mod. Phys. 61, 937 (1989).

http://dx.doi.org/10.1103/RevModPhys.61.937

E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, and Xinyang Wang, Phys. Rev. 88, 025043 (2013).

M. Ruderman and P.G. Sutherland, ApJ 196, 51 (1975).

http://dx.doi.org/10.1086/153393

G. Greenstein and G.J. Hartke, ApJ 271, 283 (1983).

http://dx.doi.org/10.1086/161195

J.S. Hey and L. Hernquist, Astrophys. J. 567, 510 (2002).

http://dx.doi.org/10.1086/338547

A. De Luca, P.A. Caraveo, S. Mereghetti, M. Negroni, and G.F. Bigmani, Astrophys. J. 623, 1051 (2005).

http://dx.doi.org/10.1086/428567

S.L. Shapiro and S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1983).

http://dx.doi.org/10.1002/9783527617661

D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, and P. Haensel, Phys. Reports 354, 1 (2001).

http://dx.doi.org/10.1016/S0370-1573(00)00131-9

Published
2019-01-19
How to Cite
Gorbar, E. (2019). Chiral Asymmetry in Magnetized Dense Relativistic Matter and Pulsar Kicks. Ukrainian Journal of Physics, 60(4), 289. https://doi.org/10.15407/ujpe60.04.0289
Section
Fields and elementary particles