Fermion Spectrum of Bose–Fermi–Hubbard Model in the Phase with Bose–Einstein Condensate

  • V. O. Krasnov Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
Keywords: Bose–Fermi–Hubbard model, optical lattices, Green’s function, Bose–Einstein condensate, energy spectrum

Abstract

We investigate the fermion spectrum within the Bose–Fermi–Hubbard model used for the description of boson-fermion mixtures of ultra-cold atoms in optical lattices. We used the method based on the Hubbard operator approach for an on-site basis. The equation for fermion Green’s function in the Bose–Fermi–Hubbard model is built; Green’s functions of higher orders are decoupled in the Hubbard-I approximation (the case of the strong on-site interaction). The corresponding spectral densities are calculated. In the case of hard-core bosons, the condition of appearance of additional bands in the fermion spectrum is investigated. It is shown that these bands exist only in the state with a Bose–Einstein condensate and appear because of the mixing of states with different numbers of bosons. These additional bands can be interpreted as a manifestation of composite excitations (when the appearance of a fermion on the site is accompanied by the simultaneous creation (or annihilation) of a boson).

References

M. Greiner et al., Nature, 415, 39 (2002).

http://dx.doi.org/10.1038/415039a

S. Ospelkaus, C. Ospelkaus, O. Wille et al., Phys. Rev. Lett. 96, 180403 (2006).

http://dx.doi.org/10.1103/PhysRevLett.96.180403

A. Albus, F. Illuminati, and J. Eisert, Phys. Rev. A 68, 023606 (2003).

http://dx.doi.org/10.1103/PhysRevA.68.023606

H.P. Buchler and G. Blatter, Phys. Rev. Lett. 91, 130404 (2003).

http://dx.doi.org/10.1103/PhysRevLett.91.130404

M. Lewenstein, L. Santos, M.A. Baranov, and H. Fehrmann, Phys. Rev. Lett. 92, 050401 (2004).

http://dx.doi.org/10.1103/PhysRevLett.92.050401

M. Iskin and J.K. Freericks, Phys. Rev. A 80, 053623 (2009).

http://dx.doi.org/10.1103/PhysRevA.80.053623

I. Titvinidze, M. Snoek, and W. Hofstetter, Phys. Rev. Lett. 100, 100401 (2008).

http://dx.doi.org/10.1103/PhysRevLett.100.100401

T.S. Mysakovych, J. Phys.: Condens. Matter 22, 355601 (2010).

http://dx.doi.org/10.1088/0953-8984/22/35/355601

T.S. Mysakovych, Condens. Matter Phys. 14, No. 4, 43301 (2011).

http://dx.doi.org/10.5488/CMP.14.43301

I.V. Stasyuk, T.S. Mysakovych, and V.O. Krasnov, Condens. Matter Phys. 13, No. 1, 13003 (2010).

http://dx.doi.org/10.5488/CMP.13.13003

I.V. Stasyuk and V.O. Krasnov, Ukr. J. Phys. 58, 68 (2013).

http://dx.doi.org/10.15407/ujpe58.01.0068

J. Hubbard, Proc. Roy. Soc. Lond. A. 276, 238 (1963).

http://dx.doi.org/10.1098/rspa.1963.0204

H. Fehrmann, M. Baranov, M. Lewenstein, and L. Santos, Opt. Express 12, 55 (2004).

http://dx.doi.org/10.1364/OPEX.12.000055

R.M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. B 78, 220504(R) (2008).

S. Akhanjee, Phys. Rev. B 82, 075138 (2010).

http://dx.doi.org/10.1103/PhysRevB.82.075138

I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

http://dx.doi.org/10.1103/RevModPhys.80.885

Published
2019-01-18
How to Cite
Krasnov, V. (2019). Fermion Spectrum of Bose–Fermi–Hubbard Model in the Phase with Bose–Einstein Condensate. Ukrainian Journal of Physics, 60(5), 443. https://doi.org/10.15407/ujpe60.05.0443
Section
Solid matter