Mechanisms of Dopant Depth Profile Modification During Mass Spectrometric Analysis of Multilayer Nanostructures

  • A. A. Efremov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. G. Litovchenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. P. Melnik V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • O. S. Oberemok V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. G. Popov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • B. M. Romanyuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
Keywords: simulation, sputtering, multilayer structure, depth profile, mass spectrometry

Abstract

Mechanisms of the spatial redistribution of components in a solid target at its ion bombardment have been analyzed theoretically. The influence of the ion mixing, crater shape, and surface roughness on the results of mass spectrometric measurements is simulated as a function of the ion energy. All the above-mentioned factors are shown to have a minimal impact on the sputtering of nano-sized Mo/Si multilayer periodic structures in the ion energy interval of 200–400 eV. Experimental studies of the dopant depth profiles and their comparison with simulation results allowed us to establish the optimum conditions for the mass spectrometric analysis and to measure the real dopant depth profiles with a depth resolution better than 1 nm.

References

R.G. Wilson, F.A. Stevie, and C.W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (Wiley, New York, 1989).

http://www.eag.com.

J.C. Vickerman and D. Briggs, ToF-SIMS: Surface Analysis by Mass Spectrometry (IM Publications, Chichester, UK, 2001).

I.P. Lisovskii, V.G. Litovchenko, V.B. Lozinskii, and V.P. Melnik, Thin Solid Films 247, 264 (1994).

http://dx.doi.org/10.1016/0040-6090(94)90811-7

F. Ludwig, C.R. Eddy, O. Malis, and R.L. Headrick, Appl. Phys. Lett. 81, 2770 (2002).

http://dx.doi.org/10.1063/1.1513655

E. Stumpe, H. Oechsner, and H. Schoof, Appl. Phys. 20, 55 (1979).

http://dx.doi.org/10.1007/BF00901787

S. Berg and I.V. Katardjiev, J. Vac. Sci. Technol. A 17, 1916 (1999).

http://dx.doi.org/10.1116/1.581704

K.O. Butarev, I.P. Koval', Yu.A.Len', and M.G. Nakhodkin, Nano-Elektron. Fiz. 5, 01025 (2013).

O. Oberemok and P. Lytvyn, Semicond. Phys. Quant. Electr. Optoelectr. 5, 101 (2002).

A. Goriachko, P.V. Melnik, A. Shchyrba, S.P. Kulyk, and M.G. Nakhodkin, Surf. Sci. 605, 1771 (2011).

http://dx.doi.org/10.1016/j.susc.2011.06.004

V. Melnik, A. Misiuk, V. Popov, O. Oberemok, B. Romanyuk, D. Gamov, and P. Formanek, Ukr. J. Phys. 32, 34 (2007).

V. Melnik, D. Wolanski, E. Bugiel, A. Goryachko, S. Chernjavski, and D. Kruger, Mater. Sci. Eng. B 102, 358 (2003).

http://dx.doi.org/10.1016/S0921-5107(02)00619-0

Yu.P. Pershin, V.A. Sevryukova, E.N. Zubarev, A.S. Oberemok, V.P. Melnik, B.N. Romanyuk, V.G. Popov, and P.M. Litvin, Metallofiz. Noveish. Tekhnol. 35, 1617 (2013).

D. Kruger, H. Ruker, B. Heinemann, V. Melnik, R. Kurps, and D. Bolze, J. Vac. Sci. Technol. B 22, 455 (2004).

http://dx.doi.org/10.1116/1.1632919

A. Romanyuk, P. Oelhafen, R. Kurps, and V. Melnik, Appl. Phys. Lett. 90, 013118 (2007).

http://dx.doi.org/10.1063/1.2430055

D. Kruger, B. Romanyuk, V. Melnik, Ya. Olikh, and R. Kurps, J. Vac. Sci. Technol. B 20, 1448 (2002).

http://dx.doi.org/10.1116/1.1493784

R. Berish, Sputtering by Particle Bombardment (Springer, Berlin, 1981).

http://dx.doi.org/10.1007/3-540-10521-2

N.V. Kostina, Ph.D. thesis (Penza,2003) (in Russian).

A.A. Efremov, Ph.D. thesis (Kyiv, 1989) (in Russian).

E. Chason, P. Bedrossian, K.M. Horn, J.Y. Tsao, and S.T. Picraux, Appl. Phys. Lett. 57, 1793 (1990).

http://dx.doi.org/10.1063/1.104024

P. Bedrossian, J.E. Houston, J.Y. Tsao, E. Chason, and S.T. Picraux, Phys. Rev. Lett. 67, 124 (1991).

http://dx.doi.org/10.1103/PhysRevLett.67.124

B. Poelsema, L.K. Verheij, and G. Comsa, Phys. Rev. Lett. 53, 2500 (1984).

http://dx.doi.org/10.1103/PhysRevLett.53.2500

R. Cerapait˙e-Truˇsinskien˙e, and A. Galdikas, Medˇziagotyra ˇ 15, 139 (2009).

Published
2019-01-17
How to Cite
Efremov, A., Litovchenko, V., Melnik, V., Oberemok, O., Popov, V., & Romanyuk, B. (2019). Mechanisms of Dopant Depth Profile Modification During Mass Spectrometric Analysis of Multilayer Nanostructures. Ukrainian Journal of Physics, 60(6), 511. https://doi.org/10.15407/ujpe60.06.0511
Section
Solid matter

Most read articles by the same author(s)

1 2 > >>