Concerning a Calculation of the Grand Partition Function of a Fluid Model

  • M. P. Kozlovskii Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • O. A. Dobush Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • R. V. Romanik Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
Keywords: coexistence curve, collective variables, reference system, simple fluid, equation of state

Abstract

The calculation method of the grand partition function of a simple fluid model in the frame of a generalized lattice model, where each cell may contain a random number of particles, is proposed. As an interaction potential between particles, the Morse potential is chosen. In vcourse of calculations, the summation over the number of particles and the integration over their coordinates are performed. Using the simplest approximation, the equation of state valid in a wide temperature range is obtained. At temperatures lower than the critical one, the presence of horizontal plots on the pressure vs density curve is found.

References

L.A. Bulavin, A.V. Oleinikova, and A.V. Petrovitskij, Int. J. of Thermophys. 17, 137 (1996).

http://dx.doi.org/10.1007/BF01448216

Y.B. Melnichenko, G.D. Wignall, D.R. Coleb, H. Frielinghaus, and L.A. Bulavin, J. of Mol. Liq. 120, 7 (2005).

http://dx.doi.org/10.1016/j.molliq.2004.07.070

L.A. Bulavin, V.V. Klepko, T.V. Karmazina, and V.I Slisenko, Neutron spectroscopy of condensed medium (Akademperiodyka, Kyiv, 2005) (in Ukrainian).

I.I. Adamenko and L.A. Bulavin, Physics of Liquids and Liquid Systems (ASMI, Kyiv, 2006) (in Ukrainian).

L.A. Bulavin, Critical Properties of Liquids (ASMI, Kyiv, 2002) (in Ukrainian).

L.A. Bulavin, Yu.O. Plevachuk, V.M. Skliarchuk, and A.I. Momot, Critical Phenomena of Stratification in Monotectic and Eutectic Metal Fusions (ASMI, Poltava, 2010) (in Ukrainian).

L.A. Bulavin and V.L. Kulinskii, J. Chem. Phys. 133, 134101 (2010).

http://dx.doi.org/10.1063/1.3496468

L.A. Bulavin and V.L. Kulinskii, J. Phys. Chem. B 115, 6061 (2011).

http://dx.doi.org/10.1021/jp201872f

A. Wyczalkowska, J. Sengers, and M. Anisimov, Physica A 334, 482 (2004).

http://dx.doi.org/10.1016/j.physa.2003.11.021

C.E. Bertrand, J.F. Nicoll, and M.A. Anisimov, Phys. Rev. E 85, 031131 (2012).

http://dx.doi.org/10.1103/PhysRevE.85.031131

M.A. Anisimov, Cond. Matt. Phys. 16, 23603:1–10 (2013).

D. Pini, G. Stell, and N.B. Wilding, Mol. Phys. 95, 483 (1998).

http://dx.doi.org/10.1080/00268979809483183

C.-L. Lee, G. Stell, and J. Hoye, J. of Mol. Liq. 112, 13 (2004).

http://dx.doi.org/10.1016/j.molliq.2003.11.004

A. Parola and L. Reatto, Adv. Phys. 44, 211 (1995).

http://dx.doi.org/10.1080/00018739500101536

A. Parola and L. Reatto, Mol. Phys. 110, 2859 (2012).

http://dx.doi.org/10.1080/00268976.2012.666573

J.-M. Caillol, Mol. Phys. 104, 1931 (2006).

http://dx.doi.org/10.1080/00268970600740774

I. Yukhnovskii, V. Kolomiets, and I. Idzyk, Cond. Matt. Phys. 16, 23604:1–23 (2013).

I.R. Yukhnovskii, Cond. Matt. Phys. 17, 43001:1–27 (2014).

E.M. Apfelbaum, J. of Chem. Phys. 134, 194506 (2011).

http://dx.doi.org/10.1063/1.3590201

H. Okumura and F.Yonezawa, J. of Chem. Phys. 113, 9162 (2000).

http://dx.doi.org/10.1063/1.1320828

J.K. Singh, J. Adhikari, and S.K. Kwak, Fluid Phase Equil. 248, 1 (2006).

http://dx.doi.org/10.1016/j.fluid.2006.07.010

J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, New York, 2006).

I.R. Yukhnovskii and M.F. Holovko, Statistical Theory of Classical Equilibrium Systems, (Naukova Dumka, Kyiv, 1980) (in Russian).

I.R. Yukhnovsky and O.L. Honopolsky, (Prepr. Inst. for Theoretical Physics; ITP-74-93P, Kyiv, 1974) (in Russian).

M. Kozlovskii, O. Dobush, and R. Romanik, (Prepr. ICMP–14–12E, Lviv, 2014) (in Ukrainian).

I.R. Yukhnovskii, M.P. Kozlovskii, and I.V. Pylyuk, Phys. Rev. B 66, 134410 (2002).

http://dx.doi.org/10.1103/PhysRevB.66.134410

M.P. KozlovskiiI and I.R. Yukhnovskii, Theor. Math. Phys. 79, 437 (1989).

http://dx.doi.org/10.1007/BF01015785

M. Kozlovskii, The Influence of an External Field on the Critical Behavior of 3-Dimensional System (Galytskii Drukar, Lviv, 2012) (in Ukrainian).

R.C. Lincoln, K.M. Koliwad, P.B. Ghate, Phys. Rev. 157, No. 3, 463 (1967).

http://dx.doi.org/10.1103/PhysRev.157.463

Published
2019-01-15
How to Cite
Kozlovskii, M., Dobush, O., & Romanik, R. (2019). Concerning a Calculation of the Grand Partition Function of a Fluid Model. Ukrainian Journal of Physics, 60(8), 805. https://doi.org/10.15407/ujpe60.08.0808
Section
General problems of theoretical physics