Common Approaches in Description of Ordinary Liquids and Hadronic Matter

  • K. V. Cherevko Faculty of Physics, Taras Shevchenko National University of Kyiv
  • L. L. Jenkovszky Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. M. Sysoev Faculty of Physics, Taras Shevchenko National University of Kyiv
  • Feng-Shou Zhang College of Nuclear Science and Technology, Beijing Normal University, Beijing Radiation Center, Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou
Keywords: heavy ion collisions, equation of state, hydrodynamic instability, phase diagram, Tolman length, thermodynamics, Skyrme parametrization


This work is an attempt to give a brief overview of the implementation of the statistical thermodynamics to hadronic matter. The possibility to use the hydrodynamic approach for developing the physical model of the formation of exotic structures in the head-on intermediate-energy heavy ion collisions is discussed. That approach is shown to be able to provide simple analytical expressions describing each step of the collision process. This allows for extracting the data concerning nuclear matter properties (surface tension, compressibility, etc.) from the properties of observed fragments. The advantages of the thermodynamic analysis of phase trajectories of the system in heavy ion collisions are discussed. Within the thermodynamic approach, the method to evaluate the curvature correction to the surface tension from the nuclear matter equation of state is described. The possibility to use statistical thermodynamics in the studies of hadronic matter and quantum liquids is discussed.


L.A. Bulavin and V.M. Sysoev, Physics of phase transitions (VPC "University of Kyiv", Kyiv, 2010).

L.A. Bulavin, D.A. Gavryushenko, and V.M. Sysoev, Molecular Physics (Znannya, Kyiv, 2006).

L.A. Bulavin and V.K. Tartakovskii, Nuclear Physics (Znannya, Kyiv, 2005).

D.H.E. Gross, Microcanonical Thermodynamics: Phase Transitions in "Small" Systems, (World Scientific, Singapore, 2001).

G.F. Bertsch and S. Das Gupta, Phys. Rep. 160, 189 (1988).

M. Baldo and C. Maieron, J. Phys. G: Nucl. Part. Phys. 34, R243 (2007).

Y. Abe, S. Ayik, P.-G. Reinhard, and E. Suraud, Phys. Rep. 275, 49 (1996).

V. Baran, M. Colonna, V. Greco, and M. Di Toro, Phys. Rep. 410, 335 (2005).

Bao-An Li, Lie-Wen Chen, and Che Ming Ko, Phys. Rep. 464, 113 (2008).

V.A. Karnaukhov, Phys. Elem. Part. Atom. Nucl. 37, 312 (2006).

S. Shlomo, J. Phys: Conf. Ser. 337, 012014 (2012).

P.D. Stevenson and P.M. Goddard, in Proceedings of the 31st International Workshop on Nuclear Theory, edited by A. Georgieva and N. Minkov (Heron Press, Sofia, 2012).

K. Oyamatsu, I. Tanihata, Y. Sugahara, H. Toki, and K. Sumiyoshi, RIKEN Review 26, 1 (2000).

M.B. Tsang, J.R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C.J. Horowitz, Jenny Lee, W.G. Lynch, Z. Kohley, R. Lemmon, P. Moller, T. Murakami, S. Riordan, X. Roca-Maza, F. Sammarruca, A.W. Steiner, I. Vidana, and S.J. Yennello, arXiv:12040466 [nucl-ex] (2012).

L.W. Chen, C.M. Ko, and B.A. Li, Phys. Rev. Lett. 94, 032701 (2005).

L.W. Chen, C.M. Ko, and B.A. Li, Phys. Rev. C 76, 054316 (2007).

T. Klahn, D. Blaschke, S. Typel, E.N.E. van Dalen, A. Faessler, C. Fuchs, T. Gaitanos, H. Grigorian, A. Ho, E.E. Kolomeitsev, M. C. Miller, G. Ropke, J. Trumper, D.N. Voskresensky, F. Weber, and H.H. Wolter, Phys. Rev. C 74, 035802 (2006).

A.S. Botvina and I.N. Mishustin, Phys. At. Nucl. 71, 1088 (2009).

S.R. Souza, B.V. Carlson, R. Donangelo, W.G. Lynch, A.W. Steiner, and M.B. Tsang, Phys. Rev. C 79, 054602 (2009).

P. Danielewicz, R.A. Lacey, and W.G. Lynch, Science 298, 1592 (2002).

J. Hufner, Phys. Rep. 125, 129 (1985).

A.S. Botvina and I.N. Mishustin, Eur. Phys. J. 30, 121 (2006).

K. Kwiatkowski, W.A. Friedman, L.W. Woo, V.E. Viola, E.C. Pollacco, C.Volant, and S.J. Yennello, Phys. Rev. C 49, 1516 (1994).

J. Pan and S. Das Gupta, Phys. Rev. C 51, 1384 (1995).

V.E. Viola, K. Kwiatkowski, J.B. Natowitz, and S.J. Yennello, Phys. Rev. Lett. 93, 132701 (2004).

K.C. Chase and A.Z. Mekjian, Phys. Rev. Lett. 75, 4732 (1995).

C. Fuchs and H.H. Wolter, Eur. Phys. J. A 30, 5 (2006).

C.B. Das, S. Das Gupta, and A.Z. Mekjian, Phys. Rev. C 67, 064607 (2003).

G. Chaudhuri and S. Das Gupta, Phys. Rev. C 80, 044609 (2009).

P.J. Siemens, Nature 305, 410 (1983).

M.R.D. Rodrigues, R. Wada, K. Hagel, M. Huang, Z. Chen, S. Kowalski, T. Keutgen, J. B. Natowitz, M. Barbui, A. Bonasera, K. Schmidt, J. Wang, L. Qin, T. Materna, and P.K. Sahu, J. Phys.: Conf. Ser. 312, 082009 (2011).

B. Borderie and M.F. Rivet, Prog. Part. Nucl. Phys. 6, 551 (2008).

N. Marie et al., Phys. Rev. C 58, 256 (1998).

H.R. Jaqaman and D.H.E. Gross, Nucl. Phys. A 524, 321 (1991).

X. Campi, J. Phys. A 524, 321 (1986).

M. Kleine Berkenbusch, W. Bauer, K. Dillman, S. Pratt, L. Beaulieu, K. Kwiatkowski, T. Lefort, W.C. Hsi, V.E. Viola, S.J. Yennello, R.G. Korteling, and H. Breuer, Phys. Rev. Lett. 88, 22701 (2001).

A. Ono and J. Randrup, Eur. Phys. J. A 30, 109 (2006).

J. Cugnon, Nucl. Phys. A 462, 751 (1987).

J.P. Bondorf, H.T. Feldmeier, S. Garpman, and E.C. Halbert, Phys. Lett. B 65, 217 (1976).

H. Stocker and W. Greiner, Phys. Rep. 137, 277 (1986).

M.B. Tsang, R. Bougault, R. Charity, D. Durand, W.A. Friedman, F. Gulminelli, A. Le Fevre, Al.H. Raduta, Ad.R. Raduta, S. Souza, W. Trautmann, and R. Wada, Eur. Phys. J. A 30, 129 (2006).

E. Bonnet and ALADIN Collaborations et al., Phys. Rev. Lett. 103, 072701 (2009).

A.S. Botvina, I.N. Mishustin, M. Begemann-Blaich, J. Hubele, G. Imme, I. Iori, P. Kreutz, G.J. Kunde, W.D. Kunze, V. Lindenstruth, U. Lynen, A. Moroni, W.F.J Muller, C.A. Ogilvie, J. Pochodzalla, G. Raciti, Th. Rubehn, H. Sann, A. Schttauf, W. Seidel, W. Trautmann, and A. Werner, Nucl. Phys. A 584, 737 (1995).

X. Campi, H. Krivine, E. Plagnol, and N. Sator, Phys. Rev. C 67, 044610 (2003).

G.F. Bertsch, Am. J. Phys. 72, 983 (2004).

L.G. Moretto, J.B. Elliott, L. Phair, and P.T. Lake, J. of Phys. G 38, 113101 (2011).

A.D. Panagiotou, M.W. Curtin, H. Toki, D.K. Scott, and P.J. Siemens, Phys. Rev. Lett. 52, 496 (1984).

M.E. Fisher, Physics 3, 255 (1967).

J. B. Elliott, P.T. Lake, L.G. Moretto, and L. Phair, Phys. Rev. C 87, 054622 (2013).

E.A. Guggenheim, J. Chem. Phys. 13, 253 (1945).

K.V. Cherevko, L.A. Bulavin, and V.M. Sysoev, Phys. Rev. C 84, 044603 (2011).

V.P. Scripov, Metastable Liquids (Wiley, New York, 1974).

J.W. Cahn, J. Chem. Phys. 42, 93 (1965).

V.G. Boyko, L.L. Jenkovszky, and V.M. Sysoev, EChAYa 22, 675 (1991).

Ph.J. Siemens and J.O. Rasmussen, Phys. Rev. Lett. 42(14), 880 (1979).

H. Stocker, R.Y. Cusson, J.A. Maruhn, and W. Greiner, Z. Phys. A 294, 125 (1980).

H.G. Baumgardt, J.U. Schott, Y. Sakamoto, E. Schopper, H. Stocker, J. Hofmann, W. Scheid, and W. Greiner, Z. Phys. A 273, 359 (1975).

G.Q. Li and R. Machleidt, Phys. Rev. C 48, 1702 (1993).

T. Alm, G. Ropke, W. Bauer, F. Daffin, and M. Schmidt, Nucl. Phys. A 587, 815 (1995).

Q. Li, Z. Li, S. Soff, M. Bleicher, and H. Stocker, J. Phys. G: Nucl. Part. Phys. 32, 407 (2006).

L.W. Chen, V. Greco, C.M. Ko, and B.A. Li, Phys. Rev. C 68, 014605 (2003).

H.H.K. Tang and Cheuk-Yin Wong, Phys. Rev. C 21, 1846 (1980).

W. Bauer, G.F. Bertsch, and H. Schulz, Phys. Rev. Lett. 69, 1888 (1992).

H. M. Xu, J.B. Natowitz, C.A. Gagliardi, R.E. Tribble, C.Y. Wong, and W.G. Lynch, Phys. Rev. C 48, 933 (1993).

L.G. Moretto, K. Tso, and G.J. Wozniak, Phys. Rev. Lett. 78, 824 (1997).

N.T.B. Stone, O. Bjarki, E.E. Gualtieri, S.A. Hannuschke, R. Lacey, J. Lauret, W.J. Llope, D.J. Magestro, R. Pak, A.M. Vander Molen, G.D. Westfall, and J. Yee, Phys. Rev. Lett. 78, 2084 (1997).

R.F. Allen, J. Colloid Interface Sci. 51, 350 (1975).

Cheuk-Yin Wong, Phys. Rev. Lett. 55, 1973 (1985).

K. Cherevko, J. Su, L. Bulavin, V. Sysoev, and Feng-Shou Zhang, Phys. Rev. C 89, 014618 (2014).

D. Bartolo, Ch. Josserand, and D. Bonn, Phys. Rev. Lett. 96, 124501 (2006).

R. Rioboo, M. Marengo, and C. Tropea, Exp. Fluid. 33, 112 (2002).

S.T. Thoroddsen and J. Sakakibara, Phys. Fluid. 10, 1359 (1998).

Kuo-Long Pan, Ping-Chung Chou, and Yu-Jen Tseng, Phys. Rev. E 80, 036301 (2009).

J. Eggers, M.A. Fontelos, Ch. Josserand, and S. Zaleski, Phys. Fluid. 22, 062101 (2010).

A.V. Chizhov and A.A. Shmidt, J. Tech. Phys. 45, 18 (2000).

I.V. Roisman, C. Planchette, E. Lorenceau, and G. Brenn, J. Fluid Mech. 690, 512 (2012).

M. Brack, C. Guet, and H.-B. Hakansson, Phys. Rep. 123, 275 (1985).

Ph. Chomaz, F. Gulminelli, and O. Juillet, Ann. Phys. 320, 135 (2005).

C.-Y. Wong, Phys. Rev. C 78, 054902 (2008).

Ph. Chomaz, M. Colonna, and J. Randrup, Phys. Rep. 389, 263 (2004).

W.D. Myers and W.J. Swiatecki, Ann. Phys. 55, 395 (1969).

L.G. Moretto, J.B. Elliott, P.T. Lake, and L. Phair, AIP Conf. Proc. 1491, 75 (2012).

D.H.E. Gross, Rep. Prog. Phys 53, 605 (1990).

Feng-Shou Zhang, Zeit. f¨ur Phys. A 356, 163 (1996).

F.-S. Zhang and L.X. Ge, Nuclear Multifragmentation (Science Press, Beijing, 1998).

Jan Toke, Jun Lu, and W. Udo Schroder, Phys. Rev. C 67, 034609 (2003).

U. Brosa and S. Grossmann, Z. Phys. A 310, 177 (1983).

D.G. Ravenhall, C.J. Pethick, and J.M. Lattimer, Nucl. Phys. A 407, 571 (1983).

V.G. Boyko, L.L. Jenkovszky, and V.M. Sysoev, Zeit. Phys. C 45, 607 (1990).

L.L. Jenkovszky, B. Kampfer, and V.M. Sysoev, Sov. J. Nucl. Phys. 57, 1507 (1994).

K. Pomorski and J. Dudek, Phys. Rev. C 67, 044316 (2003).

M.A. Anisimov, Phys. Rev. Lett. 98, 035702 (2007).

E.M. Blokhius and J. Kuipers, J. Chem. Phys. 124, 074701 (2006).

V.M. Kolomietz, S.V. Lukyanov, and A.I. Sanzhur, Phys. Rev. C 86, 024304 (2012).

J.S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982).

J.S. Rowlinson, J. Phys.: Condens. Matter 6, A1 (1994).

R.C. Tolman, J. Chem. Phys. 17, 333 (1949).

S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids (Springer, Berlin, 1960).

K.V. Cherevko, L.A. Bulavin, L.L. Jenkovszky, V.M. Sysoev, and Feng-Shou Zhang, Phys. Rev. C 90, 017303 (2014).

G.S. Denicol, T. Kodama, and T. Koide, arXiv:1002.2394 [nucl-th].

S. Pal, arXiv:1001.1585 [nucl-th].

P. Bozek, arXiv:0911.2397 [nucl-th].

T. Schafer and D. Teaney, Rep. Progr. Phys. 72, 126001 (2009).

I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A 757, 1 (2005).

B.B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A 757, 28 (2005).

K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005).

L.P. Csernai, J.I. Kapusta, and L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006).

M.I. Gorenstein, M. Hauer, and O.N. Moroz, Phys. Rev. C 77, 024911 (2008).

E. Khan, arXiv:0905.3335[nucl-th].

K. Maeda, G. Baym, and T. Hatsuda, arXiv: 0904.4372 [cond-mat.quant.gas].

Renxin Xu, arXiv:0912.0349 [astro-ph.HE].

E. Taylor and M. Randera, arXiv:1002.0869 [condmat.quant-gas].

T. Koide, E. Nakano, and T. Kodama, arXiv: 0901.3707 [hep-ph].

G.G.N. Angilella et al., arXiv:0901.265 [cond-mat.statmech].

I.Z. Fisher, Statistical Theory of Liquids (Univ. of Chicago Press, Chicago, 1964).

J. De Boer, Physica 14, 139 (1948).

L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 5 (Pergamon, Oxford, 1980).

L.A. Bulavin, L.L. Jenkovszky, V.K. Magas, V.M. Sysoev, and K.V. Cherevko, in Proceedings of the 2-nd International Conference on Current Problems in Nuclear Physics and Atomic Energy, Vol. 1, P. 201 (Institute for Nuclear Research of NASU, Kyiv, 2008).

E. Witten, Phys. Rev. D 30, 272 (1984).

D. Chandra and A. Goyal, Phys. Rev. D 62, 063505 (2000).

M. Brilenkov, M. Eingorn, L. Jenkovszky, and A. Zhuk, Eur. Phys. J. C 74, 3011 (2014).

L.L. Jenkovszky, B. Kampfer, and V.M. Sysoev, Z. Phys. C 48, 147 (1990).

V.G. Boyko, L.L. Jenkovszky, B. Kampfer, and V.M. Sysoev, Astron. Nachrichten. 311, 265 (1990).

L.A. Bulavin, L.L. Jenkovszky, S.M. Troshin, and N.E. Tyurin, EChAYa 41, 924 (2010).

How to Cite
Cherevko, K., Jenkovszky, L., Sysoev, V., & Zhang, F.-S. (2019). Common Approaches in Description of Ordinary Liquids and Hadronic Matter. Ukrainian Journal of Physics, 60(8), 708.
Nuclei and nuclear reactions