Features of Percolation Transition in Systems on the Basis of Oligoglycols and Carbon Nanotubes

  • V. V. Klepko Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine
  • E. A. Lysenkov V.O. Sukhomlynskyi National University of Mykolaiv
Keywords: electric conductivity, oligoglycol, nanotubes, percolation transition


The results of researches on the electric conductivity in the percolation transition region of the oligoglycol/nanotubes systems are reported. It is shown that the conductivity can be described in the framework of the critical percolation theory. The critical parameters of percolation transition are found to change, by depending on various factors, and to differ from the predictions of the statistical percolation theory. A relationship between the critical conductivity indices and the fractal dimensionality of a conducting cluster is found. It is demonstrated that the application of a scaling function allows the concentration dependences of conductivity to be described with the help of a unique universal function.


I. Alateyah, H.N. Dhakal, and Z.Y. Zhang, Adv. Polymer Technol. 32, 21368 (2013).


D.R. Paul and L.M. Robeson, Polymer 49, 3187(2008).


J. Liu, Y. Gao, D. Cao, L. Zhang, and Z. Guo, Langmuir 27, 7926 (2011).


O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, S.V. Snegir, V.I. Petrenko, V.L. Aksenov, and L.A. Bulavin, Chem. Phys. Lett. 493, 103 (2010).


Y. Prilutski, S. Durov, L. Bulavin, V. Pogorelov, Y. Astashkin, V. Yashchuk, T. Ogul'chansky, E. Buzaneva, and G. Andrievsky, Mol. Cryst. Liq. Cryst. 324, 65 (1998).


O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, V.I. Petrenko, V.L. Aksenov, and L.A. Bulavin, Fulleren. Nanotub. Carbon Nanostruct. 18, 458 (2010).


V.I. Petrenko, V.L. Aksenov, M.V. Avdeev, L.A. Bulavin, L. Rosta, L. Vekas, V.M. Garamus, and R. Willumeit, Phys. Solid State 52, 974 (2010).


V.I. Petrenko, M.V. Avdeev, V.M. Garamus, L.A. Bulavin, V.L. Aksenov, and L. Rosta, Colloid. Surf. A 369, 160 (2010).


E.A. Lysenkov, V.V. Klepko, V.M. Golovanets, and V.L. Demchenko, Ukr. J. Phys. 59, 906 (2014).


D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).

W. Bauhofer and J.Z. Kovacs, Compos. Sci. Technol. 69, 1486 (2009).


M.T. Connor, S. Roy, T.A. Ezquerra, and F.J. Balta Calleja, Phys. Rev. B 57, 2286 (1998).


A. Allaoui, S.V. Hoa, and M.D. Pugh, Compos. Sci. Technol. 68, 410 (2008).


E.A. Lysenkov and V.V. Klepko, J. Nano Electron. Phys. 5, 03052 (2013).

P.G. De Gennes, J. Phys. Lett. (Paris) 37, L-1 (1976).


A.V. Melezhik, Yu.I. Sementsov, and V.V. Yanchenko, Zh. Prikl. Khim. 78, 938 (2005).

A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. B 33, 1737 (1995).


E.A. Lysenkov, V.V. Klepko, and Yu.V. Yakovlev, Nanostrukt. Materialoznav. 3–4, 46 (2013).

Y.-J. Li, M. Xu, and J.-Q. Feng, J. Appl. Polym. Sci. 106, 3359 (2007).


E.A. Lysenkov, Y.V. Yakovlev, and V.V. Klepko, Ukr. J. Phys. 58, 378 (2013).


E.A. Lysenkov, N.I. Lebovka, Y.V. Yakovlev, V.V. Klepko, and N.S. Pivovarova, Compos. Sci. Technol. 72, 1191 (2012).


E.A. Lysenkov, V.V. Klepko, and Yu.V. Yakovlev, Nanosyst. Nanomat. Nanotekhnol. 12, 495 (2014).

Yu.V. Yakovlev, V.V. Klepko, and E.A. Lysenkov, Polimer. Zh. 36, 53 (2014).

J.P. Clerc, G. Giraud, J.M. Laugier, and J.M. Luck, Adv. Phys. 39, 191 (1990).


M.F. Sykes, D.S. Gaunt, and J.W. Essam, J. Phys. A 9, L43 (1976).


Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983).


A.L. Efros and B.I. Shklovskii, Phys. Status Solidi B 76, 475 (1976).


How to Cite
Klepko, V., & Lysenkov, E. (2019). Features of Percolation Transition in Systems on the Basis of Oligoglycols and Carbon Nanotubes. Ukrainian Journal of Physics, 60(9), 944. https://doi.org/10.15407/ujpe60.09.0944