The Properties of 3 nm-Sized Detonation Diamond from the Point of View of Colloid Science

  • N. O. Mchedlov-Petrossyan Department of Physical Chemistry, V.N. Karazin National Kharkiv University
  • N. N. Kamneva Department of Physical Chemistry, V.N. Karazin National Kharkiv University
  • A. P. Kryshtal Department of Physics and Technology, V.N. Karazin National Kharkiv University
  • A. I. Marynin National University of Food Technologies
  • V. B. Zakharevich National University of Food Technologies
  • V. V. Tkachenko Department of Physical Chemistry, V.N. Karazin National Kharkiv University
Keywords: detonation nanodiamonds, hydrosol, regularities of coagulation, origin of the particle charge, transmission electron microscopy, dynamic light scattering, size–concentration dependence

Abstract

The colloidal properties of the hydrosol of a detonation nanodiamond have been considered and discussed. The 3nm-sized positively charged colloidal species produced by the NanoCarbon Research Institute, Japan, undergo a further aggregation on the dilution. They exhibit the emission at 625 nm with the excitation maximum at 491 nm, adsorb anionic dyes, and readily coagulate at the adding of electrolytes. The coagulation occurs in line with the Schulze–Hardy rule, the coagulation strength of the anions follows the Hofmeister series, whereas the abnormally high influence of the most hydrophilic anion, HO−, allows revealing the acidic character of the positive surface charge. The hypothesis of the so-called periodic colloidal structures has been put forward in order to explain the dependence of the particle size on the concentration of the hydrosol and the high viscosity of the initial 5.0 wt./vol. % detonation nanodiamond colloid.

References

E. Osawa, in Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, edited by S. Soumiya (Elsevier, Amsterdam, 2013), Chapter 2.3, p. 89.

http://dx.doi.org/10.1016/B978-0-12-385469-8.00004-6

E. Osawa, Pure Appl. Chem. 80, 1365 (2008).

http://dx.doi.org/10.1351/pac200880071365

V.N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nature Nano 7, 11 (2012).

http://dx.doi.org/10.1038/nnano.2011.209

O.A. Shenderova and D.M. Gruen, in Ultrananocrystalline Diamond: Synthesis, Properties and Applications, edited by D.M. Gruen, O.A. Shenderova (Elsevier, Oxford, 2012).

E. Osawa, S. Sasaki and R. Yamanoi, in Ultrananocrystalline Diamond: Synthesis, Properties and Applications, edited by D.M. Gruen, O.A. Shenderova (Elsevier, Oxford, 2012).

N. Gibson, O. Shenderova, T.J.M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald and D.W. Brenner, Diamond and Related Mater. 18, 620 (2009).

http://dx.doi.org/10.1016/j.diamond.2008.10.049

M. Ozawa, M. Inaguma, M. Takahashi, F. Kataoka, A. Kr¨uger, and E. Osawa, Adv. Mater. 19, 1201 (2007).

http://dx.doi.org/10.1002/adma.200601452

O.A. Williams, J. Hees, C. Dieker, W. J¨ager, L. Kirste, and C. E. Nebel, ACS Nano, 4, 4824 (2010).

http://dx.doi.org/10.1021/nn100748k

N.O. Mchedlov-Petrossyan, Chem. Rev. 113, 5149 (2013).

http://dx.doi.org/10.1021/cr3005026

T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, T.Y. Kang, C.L. Cheng, and P. Bergonzo, Nanoscale 4, 6792 (2012).

http://dx.doi.org/10.1039/c2nr31655b

J.T. Paci, H.B. Man, B. Saha, D. Ho, and G.C. Schatz, J. Phys. Chem. C 117, 17256 (2013).

http://dx.doi.org/10.1021/jp404311a

J. Hees, A. Kriele, and O.A. Williams, Chem. Phys. Lett. 509, 12 (2011).

http://dx.doi.org/10.1016/j.cplett.2011.04.083

X. Xu, Z. Yu, Y. Zhu, and B. Wang, Diamond and Related Mater. 14, 206 (2005).

http://dx.doi.org/10.1016/j.diamond.2004.11.004

N. Gibson, T.-J. Luo, O. Shenderova, A. Koscheev, and D. Brenner, J. Nanoparticle Res. 14, 1 (2012).

http://dx.doi.org/10.1007/s11051-011-0700-9

N.O. Mchedlov-Petrossyan, N.N. Kamneva, A.I. Marynin, A.P. Kryshtal, and E. Osawa, Phys. Chem. Chem. Phys. 17, 16186 (2015).

http://dx.doi.org/10.1039/C5CP01405K

Y. Marcus, Langmuir 29, 2881 (2013).

http://dx.doi.org/10.1021/la3041659

A. N. Zhukov, F. R. Gareeva, and A. E. Aleksenskii, Colloid J. 74, 463 (2012).

http://dx.doi.org/10.1134/S1061933X12040163

A.S. Barnard, J. Mat. Chem. 18, 4038 (2008).

http://dx.doi.org/10.1039/b809188a

A.S. Barnard and E. Osawa, Nanoscale 6, 1188 (2014).

http://dx.doi.org/10.1039/C3NR05344J

A.Y. Vul, E. D. Eydelman, M. Inakuma, and E. Osawa, Diamond and Related Mater. 16, 2023 (2007).

http://dx.doi.org/10.1016/j.diamond.2007.08.003

I.F. Efremov, Periodic Colloidal Structures (Khimiya, Leningrad, 1971) (in Russian).

I.F. Efremov and O.G. Us'yarov, Russ. Chem. Rev. 45, 435 (1976).

http://dx.doi.org/10.1070/RC1976v045n05ABEH002666

H. Sonntag, K. Strenge, and B. Vincent, Coagulation Kinetics (Springer, New York, 1987).

http://dx.doi.org/10.1007/978-1-4757-0617-8

M.V. Avdeev, N. N. Rozhkova, V.L. Aksenov, V.M. Garamus, R. Willumeit, and E. Osawa, J. Phys. Chem. C 113, 9473 (2009).

http://dx.doi.org/10.1021/jp900424p

M.V. Avdeev, V.L. Aksenov, O.V. Tomchuk, L.A. Bulavin, V.M. Garamus, and E. Osawa, J. of Phys. Conden. Matter 25, 445001 (2013).

http://dx.doi.org/10.1088/0953-8984/25/44/445001

O.V. Tomchuk, D.S. Volkov, L.A. Bulavin, A.V. Rogachev, M.A. Proskurnin, M.V. Korobov, and M.V. Avdeev J. Phys. Chem. C 119, 794 (2015).

http://dx.doi.org/10.1021/jp510151b

M.V. Avdeev, N.N. Rozhkova, V.L. Aksenov, V.M. Garamus, R. Willumeit, and E. Osawa, J. Phys. Chem. C 113, 9473 (2009).

http://dx.doi.org/10.1021/jp900424p

F. Gareeva, N. Petrova, O. Shenderova, and A. Zhukov, Coll. Surf. A: Phys. Chem. Eng. Asp. 440, 202 (2014).

http://dx.doi.org/10.1016/j.colsurfa.2012.08.055

M.V. Korobov, M.M. Batuk, N.V. Avramenko, N.I. Ivanova, N.N. Rozhkova, and E. Osawa, Diamonds and Related Mater. 19, 665 (2010).

http://dx.doi.org/10.1016/j.diamond.2010.02.032

M.V. Korobov, D.S. Volkov, N.V. Avramenko, L.A. Belyaeva, P.I. Semenyuk, and M.A. Proskurnin, Nanoscale 5, 1529 (2013).

http://dx.doi.org/10.1039/c2nr33512c

A. M. Aparkin, G.V. Nazarov, V.A. Zlobin, P.E. Kuznetsov, S.M. Rogacheva, and I.A. Sogunenko, Colloid J. 65, 725 (2003).

http://dx.doi.org/10.1023/B:COLL.0000009106.40897.9c

Published
2019-01-15
How to Cite
Mchedlov-Petrossyan, N., Kamneva, N., Kryshtal, A., Marynin, A., Zakharevich, V., & Tkachenko, V. (2019). The Properties of 3 nm-Sized Detonation Diamond from the Point of View of Colloid Science. Ukrainian Journal of Physics, 60(9), 932. https://doi.org/10.15407/ujpe60.09.0932
Section
Nanosystems