Dimensional Crossover and Thermophysical Properties of Nanoscale Condensed Matter

  • A. V. Chalyi Department of Medical and Biological Physics, O.O. Bogomolets National Medical University
  • E. V. Zaitseva Department of Medical and Biological Physics, O.O. Bogomolets National Medical University
  • K. A. Chalyy Department of Medical and Biological Physics, O.O. Bogomolets National Medical University
  • G. V. Khrapiichuk Department of Medical and Biological Physics, O.O. Bogomolets National Medical University
Keywords: dimensional crossover, confined systems, effective critical exponents, isochoric heat capasity, isothermal compressibility


The problem going to be discussed is as follows: how results for 3D systems transfer to results for 2D systems and vice versa. Obviously, such a 3D ⇔ 2D dimensional crossover should be smooth and without discontinuities. Here, this problem is studied for a single-component classical liquid in a reduced geometry, namely for slit-like and cylindrical pores with the lower crossover dimensionality Dcros = 2 and Dcros = 1, correspondingly, which are filled by water molecules. The influence of the 3D ⇔ 2D dimensional crossover on the effective critical exponents aeff, veff, yeff and on the thermophysical properties such as the heat capacity CV and the isothermal compressibility BT is investigated.


L.A. Bulavin and K.A. Chalyy, Neutron Optics of Mesoscale Liquids (Naukova Dumka, Kiev, 2006).

M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon & Breach, New York, 1991).

A.V. Chalyi and A.G. Lebed, Non-Homogeneous Liquids near the Critical Point and the Boundary of Stability and Theory of Percolation in Ceramics (Harwood, London, 1993).

E.K. Riedel and F.J. Wegner, Phys. Rev. Lett. 29, 349 (1972).


L.A. Bulavin, A.V. Chalyi, K.A. Chalyy et al.,Preprint of the Bogolyubov Institute for Theoretical Physics (ITP-93-15E, Kiev, 1993).

A.V. Chalyi, L.A. Bulavin, V.F. Chekhun et al., Cond. Matter Phys. 16, 23008 1 (2013).

D. O'Conner, J. Phys. A 25, 101 (1992).


S. Ghosh et al., Nature Mater. 9, 555 (2010).


L. Yang, P. Grassburger, and B. Hu, Phys. Rev. E 74, 062101 (2006).


S. Berber, Y.-K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000).


M.H. Fischer and M. Sigrist, J. of Phys.: Confer. Ser. 200, 012034, (2010).


S. Karimi and C.A. Ullrich, Phys. Rev. B 90, 245304 (2014).


S. Krali et al., Soft Matter 8, 2460 (2012).


S.-B. Liao et al., Nucl. Phys. B 497, 611 (1997).


A.Z. Patashinskii and V.L. Pokrovskii, The Fluctuation Theory of Phase Transitions (Pergamon Press, Oxford, 1979).

H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Glarendon Press, Oxford, 1971).

K.G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).


L.A. Bulavin Critical Properties of Liquids (ACMI, Kiev, 2002).

L.A. Bulavin, A.V. Oleinikova, A.V. Petrovitskij, Intern. J. of Thermophys. 17, 137 (1996).


L.A. Bulavin, V. Kopylchuk, V. Garamus et al. Appl. Phys. A: Mater. Sci. and Process. 74, 546 (2002).


Y.B. Melnichenko et al., J. Mol. Liquids. 120, 7 (2005).


M.A. Anisimov, A.V. Voronel, and E.E. Gorodetskii, Sov. Phys. JETF 33, 605 (1971).

B. Kastening, Phys. Rev. E 86, 041105 (2012); arXiv: 1209.0105v2 [cond-mat.stat-mech] (2013).

K. Binder, Phys. Rev. Lett. 47, 693 (1981).


A.V. Chalyi and A.N. Vasilev, Ukr. Phys. J. 45, 118 (2000).

C.E. Bertrand and M.A. Anisimov, J. Phys. Chem. B. 115(48), 14099 (2011).


H. Weing¨artner and W. Schr¨oer, in Adv. Chem. Phys., edited by I. Prigogine and S.A. Rice (Wiley, London, 2001), vol. 116, p. 1.


D.Y. Ivanov, Critical Phenomena in Non-Ideal Systems (Fizmatlit, Moscow, 2003).

M.E. Fisher, in Critical phenomena. Proceedings of the International School of Physics "Enrico Fermi", edited by M.S. Green (Academic Press, New York, 1971).

K. Binder, Annu. Rev. Phys. Chem. 43, 33 (1992).


M.F. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press, London, 1983).

A.V. Chalyi, J. Mol. Liquids 58, 179 (1993).


E.L. Lakoza, V.M. Sysoev, and A.V. Chalyi, Sov. Phys.- JETF 38, 298 (1974).

K.A. Chalyy, Low Temp. Phys. 30, 686 (2004).


K.A. Chalyy, K. Hamano, and A.V. Chalyi, J. Mol. Liquids, 92, 153 (2001).


I. Brovchenko and A. Oleinikova, in Handbook of Theoretical and Computational Nanotechnology, edited by M. Rieth, W. Schommers, 62, (Amer. Sci., Stevenson R., 2005), p. 1.

M.O. Kimball, K.P. Mooney, and F.M. Gasparini, Phys. Rev. Lett. 92, 115301 (2004).


A.V. Chalyi and E.V. Zaitseva, Bull. of the Kiev Univ. (Phys. & Math.), No. 1, 287 (2009).

A.V. Chalyi, G.V. Hrapiichuk, K.A. Chalyy et al., Ukr. Phys. J. 55, 1113 (2010).

A.V. Chalyi and L.M. Chernenko, JETP 87, 187 (1984).

K. Kawasaki, in Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green (Academic Press, New York, 1989).

K.A. Chalyy, Bull. of the Kiev Univ. (Phys. & Math.), No. 2, 378 (2005).

K.A. Chalyy, L.A. Bulavin, and A.V. Chalyi, J. Phys. Studies 9, 66 (2005).

How to Cite
Chalyi, A., Zaitseva, E., Chalyy, K., & Khrapiichuk, G. (2019). Dimensional Crossover and Thermophysical Properties of Nanoscale Condensed Matter. Ukrainian Journal of Physics, 60(9), 885. https://doi.org/10.15407/ujpe60.09.0885
Soft matter