Viscometric Research of Concentration Regimes for Polyvinyl Alcohol Solutions

  • O. V. Khorolskyi Poltava V.G. Korolenko National Pedagogical University
  • O. P. Rudenko Poltava V.G. Korolenko National Pedagogical University
Keywords: polyvinyl alcohol, viscometry, crossover concentration, solution


Experimental researches are carried out for the concentration and temperature dependences of the kinematic viscosity and the density of diluted and semidiluted solutions of polyvinyl alcohols (PVAs) with hydrolysis degrees of 85.2±1.0 mol.% and 98.4±0.4 mol.% in dimethyl sulfoxide and water. Critical concentrations of the transition from the diluted solution to more concentrated regimes are calculated. The results of calculations show that the critical crossover concentrations for PVA solutions in dimethyl sulfoxide are lower than that for PVA aqueous solutions. The obtained temperature dependences of the effective hydrodynamic radii of macromolecules in the diluted PVA solutions testify that this parameter decreases, as the temperature grows.


S.N. Ushakov, Polyvinyl Alcohol and Its Derivatives (Izd. Akad. Nauk SSSR, Moscow, 1960) (in Russian).

F.W. Harris and L.K. Post, J. Polym. Sci. Polym. Lett. Ed. 13, 225 (1975).

A.K. Bajpai, S.K. Shukla, S. Bhanu, and S. Kankane, Prog. Polym. Sci. 33, 1088 (2008).

J. Kopeˇcek and K. Ulbrich, Prog. Polym. Sci. 9, 1 (1983).

T V. Chirila, Ye Hong, P.D. Dalton, I.J. Constable, and M.F. Refojo, Prog. Polym. Sci. 23, 475 (1998).

E.T. Zhilyakova, O.O. Novikov, M.A. Khalikova, N.N. Popov, N.N. Sabelnikova, and L.M. Danilenko, Nauch. Vedom. Belgorod. Gos. Univ. Ser. Med. Pharm. 93, 47 (2010).

D.L. Deskins, Sh. Ardestani, and P.P. Young, J. Vis. Exp. 62, 3885 (2012).

A.A. Ryabtseva and Sheikh M.H. Rahman, Klinich. Oftalmol. 2, 70 (2001).

Siddaramaiah, T.M. Pramod Kumar, and V. Ravi, J. Macromol. Sci. A 44, 229 (2007).

D. Paul, Prog. Polym. Sci. 14, 597 (1989).

J.H. Braybrook and L.D. Hall, Prog. Polym. Sci. 15, 715 (1990).

I.I. Adamenko, L.A. Bulavin, V. Ilyin, S.A. Zelinsky, and K.O. Moroz, J. Mol. Liq. 127, 90 (2006).

L.A. Bulavin, A I. Fisenko, and N.P. Malomuzh, Chem. Phys. Lett. 453, 183 (2008).

N.A. Atamas, A.M. Yaremko, L.A. Bulavin V.E. Pogorelov, S. Berski, Z. Latajka, H. Ratajczak, and A. AbkowiczBie’nko, J. Mol. Struct. 605, 187 (2002).

A. Gordon and G. Ford, The Chemist's Companion: A Handbook of Practical Data, Techniques, and References (Wiley, New York, 1972).

Yu.B. Mel'nichenko, V.V. Klepko, V.V. Shilov, V.B. Ivanitskij, and L.A. Bulavin, Vysokomolek. Soedin. A 33, 1849 (1991).

Yu.B. Mel'nichenko and L.A. Bulavin, Polymer 32, 3295 (1991).

L.A. Bulavin, N.L. Sheiko, Y.F. Zabashta, and T.Y. Nikolayenko, Ukr. J. Phys. 55, 1045 (2010).

L.A. Bulavin, E.Yu. Aktan, and Yu.F. Zabashta, Polymer Sci. B 47, 109 (2005).

L.A. Bulavin, E.Yu. Aktan, and Yu.F. Zabashta, Vysokomolek. Soedin. Kratk. Soobshch. 44, 1536 (2002).

P.G. Babaevskii, P.A. Kozlov, and E.B. Trostyanskaya, Vysokomolek. Soedin. A 28, 426 (1986).

B.E. Geller, A.A. Geller, and V.G. Chirtulov, Practical Guide to Physical Chemistry of Fiber-Forming Polymers (Khimiya, Moscow, 1996) (in Russian).

M. Matsumoto and Y. Otanagi, J. Polymer Sci. ¯ 46, 441 (1960).

M. Kawaguchi, A. Sano, and A. Takahashi, Polymer J. 13, 1019 (1981).

C. Meng Kok and A. Rudin, Europ. Polym. J. 18, 363 (1982).

Q. Ying and B. Chu, Macromolecules 20, 362 (1987).

A. Einstein, Ann. Phys. 19, 289 (1906).

N.S. Klimenko, A.V. Shevchuk, S.A. Peleshanko, M.Ya. Vortman, E.G. Privalko, V.V. Shevchenko, and V.V. Tsukruk, Polymer. Zh. 28, 42 (2006).

A.V. Khorolskyi and A.P. Rudenko, Vesn. Grodzen. Dzyarzh. Univ. Ser. 2. Matem. Fiz. Infarm. Vylich. Tekhn. Kirav. 192, 101 (2015).

How to Cite
Khorolskyi, O., & Rudenko, O. (2019). Viscometric Research of Concentration Regimes for Polyvinyl Alcohol Solutions. Ukrainian Journal of Physics, 60(9), 880.
Soft matter