Asymmetry of the Hamiltonian and the Singular Behavior of the Tolman Length within the Canonical Formalism Approach

  • V. L. Kulinskii Department for Theoretical Physics, Odesa National University
Keywords: Tolman length, critical point, canonical form

Abstract

The connection of the asymmetry of a Hamiltonian with a critical behavior of the Tolman length is studied from the point of view of a nonlinear transformation of the order parameter. It is shown that the structure of the critical asymptotics of the Tolman length is determined by that for the asymmetric part of the isothermal compressibility. The relation to the singularity of the diameter of a binodal is proved within the canonical formalism approach. It is shown how to obtain the leading critical behavior from the exact statistical mechanics expressions for the Tolman length. The results are compared with the known results by M.A. Anisimov, Phys. Rev. Lett., 98 035702 (2007).

References

R.C. Tolman, J. Chem. Phys. 17(3), 333 (1949).

http://dx.doi.org/10.1063/1.1747247

W. Helfrich, Z. Naturforsch. C 28, 693 (1973).

http://dx.doi.org/10.1515/znc-1973-11-1209

J.S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Claredon Press, Oxford, 1982).

A. Dillmann and G.E.A. Meier, J. Chem. Phys. 94, 3872 (1991).

http://dx.doi.org/10.1063/1.460663

C.F. Delale and G.E.A. Meier, J. Chem. Phys. 98, 9850 (1993).

http://dx.doi.org/10.1063/1.464363

V.I. Kalikmanov, Phys. Rev. E 55, 3068 (1997).

http://dx.doi.org/10.1103/PhysRevE.55.3068

M.E. Fisher, Physics 3, 255 (1967).

L.A. Bulavin, O.A. Grekhov, and V.M. Sysoev, J. Surf. Invest. X Ray 4, 74 (1998).

V.M. Kolomietz and A.I. Sanzhur, Phys. Rev. C 88, 044316 (2013).

http://dx.doi.org/10.1103/PhysRevC.88.044316

K.V. Cherevko, L.A. Bulavin, L.L. Jenkovszky, V.M. Sysoev, and F.-S. Zhang, Phys. Rev. C 90, 017303 (2014).

http://dx.doi.org/10.1103/PhysRevC.90.017303

M.P.A. Fisher and M. Wortis, Phys. Rev. B 29, 6252 (1984).

http://dx.doi.org/10.1103/PhysRevB.29.6252

P. Phillips and U. Mohanty, J. Chem. Phys. 83, 6392 (1985).

http://dx.doi.org/10.1063/1.449588

A.Z. Patashinskii and V.L. Pokrovsky, Fluctuation Theory of Critical Phenomena (Pergamon, Oxford, 1979).

J.F. Nicoll, Phys. Rev. A 24, 2203 (1981).

http://dx.doi.org/10.1103/PhysRevA.24.2203

V.L. Kulinskii, J. Chem. Phys. 133, 034121 (2010).

http://dx.doi.org/10.1063/1.3457943

L.A. Bulavin and V.L. Kulinskii, J. Chem. Phys., 133, 134101 (2010).

http://dx.doi.org/10.1063/1.3496468

L.A. Bulavin and V.L. Kulinskii, J. Phys. Chem. B 115, 6061 (2011).

http://dx.doi.org/10.1021/jp201872f

V.L. Koulinskii and N.P. Malomuzh, Condens. Matter Phys. 9, 29 (1997).

http://dx.doi.org/10.5488/CMP.9.29

V.L. Kulinskii, J. Mol. Liq. 105, 273 (2003).

http://dx.doi.org/10.1016/S0167-7322(03)00067-9

V. Kulinskii and N. Malomuzh, Physica A 388, 621 (2009).

http://dx.doi.org/10.1016/j.physa.2008.11.014

Y.C. Kim, M.E. Fisher, and G. Orkoulas, Phys. Rev. E 67, 061506 (2003).

http://dx.doi.org/10.1103/PhysRevE.67.061506

M.A. Anisimov, Phys. Rev. Lett. 98, 035702 (2007).

http://dx.doi.org/10.1103/PhysRevLett.98.035702

J. Wang and M.A. Anisimov, Phys. Rev. E 75, 051107 (2007).

http://dx.doi.org/10.1103/PhysRevE.75.051107

E.M. Blokhuis and J. Kuipers, J. Chem. Phys. 124, 074701 (2006).

http://dx.doi.org/10.1063/1.2167642

M.A. Anisimov and J. Wang, Phys. Rev. Lett. 97, 025703 (2006).

http://dx.doi.org/10.1103/PhysRevLett.97.025703

J. Hubbard and P. Schofield, Phys. Lett. A 40, 245 (1972).

http://dx.doi.org/10.1016/0375-9601(72)90675-5

M.F. Holovko and I.R. Yukhnovsky, The Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kyiv, 1980) (in Russian).

V.L. Kulinskii, Ukr. Fiz. Zh. 38, 1872 (1993).

L.D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon Press, Oxford, 1980).

T. Poston and I.N. Stewart, Catastrophe Theory and Its Applications (Pitman, London, 1978).

R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New York, 1981), Vol. 1.

V.I. Arnold, A.N. Varchenko, and S.M. Gusein-Zade, Singularities of Differentiable Maps: Vol. 1: The Classification of Critical Points Caustics, Wave Fronts (Birkh¨auser, Boston, 1985).

N. Dunford and J.T. Schwartz, Linear Operators, General Theory (Wiley-Interscience, New York, 1988), Vol. 1.

D. Sornette, P. Simonetti, and J.V. Andersen, Phys. Rep. 335, 19 (2000).

http://dx.doi.org/10.1016/S0370-1573(00)00004-1

Yu.M. Ivanchenko, A.A. Lisyansky, and A.E. Filippov, Fluctuational Effects in the Systems with Competitive Interactions (Naukova Dumka, Kiev, 1989) (in Russian).

M. Abramovitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972).

J.F. Nicoll and R.K.P. Zia, Phys. Rev. B 23, 6157 (1981).

http://dx.doi.org/10.1103/PhysRevB.23.6157

Y.C. Kim and M.E. Fisher, Chem. Phys. Lett. 414, 185, (2005).

http://dx.doi.org/10.1016/j.cplett.2005.07.105

V.C. Weiss and W. Schr¨oer, J. Stat. Mech. 2008, P04020 (2008).

http://dx.doi.org/10.1088/1742-5468/2008/04/P04020

C.N. Yang and C.P. Yang, Phys. Rev. Lett. 13, 303 (1964).

http://dx.doi.org/10.1103/PhysRevLett.13.303

M.E. Fisher, J. Stat. Phys. 75, 1 (1994).

http://dx.doi.org/10.1007/BF02186278

L.A. Bulavin, V.L. Kulinskii, and N.P. Malomuzh, Ukr. Fiz. Zh. 55, 1238 (2010).

S. Fisk and B. Widom, J. Chem. Phys. 50, 3219 (1969).

http://dx.doi.org/10.1063/1.1671544

E.M. Blokhuis and J. Kuipers, J. Chem. Phys. 126, 054702 (2007).

http://dx.doi.org/10.1063/1.2434161

E.M. Blokhuis and D. Bedeaux, J. Mol. Phys. 80, 705 (1993).

http://dx.doi.org/10.1080/00268979300102581

J.G. Kirkwood and F.P. Buff, J. Chem. Phys. 17, 338 (1949).

http://dx.doi.org/10.1063/1.1747248

E.M. Blokhuis and D. Bedeaux, J. Chem. Phys. 97, 3576 (1992).

http://dx.doi.org/10.1063/1.462992

J.-P. Hansen and I.R. Mcdonald, Theory of Simple Liquids (Academic Press, New York, 2006).

D.G. Triezenberg and R. Zwanzig, Phys. Rev. Lett. 28, 1183 (1972).

http://dx.doi.org/10.1103/PhysRevLett.28.1183

E.M. Blokhuis, Phys. Rev. E 87, 022401 (2013).

http://dx.doi.org/10.1103/PhysRevE.87.022401

V.L. Kulinskii and N.P. Malomuzh, J. Mol. Liq. 158, 166 (2011).

http://dx.doi.org/10.1016/j.molliq.2010.11.013

V.L. Kulinskii, J. Phys. Chem. B 114, 2852 (2010).

http://dx.doi.org/10.1021/jp911897k

S.W. Barton, B.N. Thomas, F. Novak, P.M. Weber, J. Harris, P. Dolmer, J.M. Bloch, and S.A. Rice, Nature 321, 685 (1986).

http://dx.doi.org/10.1038/321685a0

Published
2019-01-15
How to Cite
Kulinskii, V. (2019). Asymmetry of the Hamiltonian and the Singular Behavior of the Tolman Length within the Canonical Formalism Approach. Ukrainian Journal of Physics, 60(9), 844. https://doi.org/10.15407/ujpe60.09.0844
Section
Soft matter