Calculation of the Ground-State Ionization Energy for Shallow Donors in n-Ge Single Crystals within the Δ1-Model for the Conduction Band

  • S. V. Luniov Luts’k National Technical University
  • O. V. Burban Luts’k National Technical University
  • P. F. Nazarchuk Luts’k National Technical University
Keywords: Ritz variational method, chemical shift, Δ1-minimum, anisotropy factor


On the basis of the Ritz variational method, the ionization energies for the ground states of Sb, P, and As donors in n-Ge single crystals are calculated in the framework of the Δ1-model for the conduction band and taking the dispersion law anisotropy and the chemical shift into account. A comparison of theoretical results with corresponding experimental data shows that the model of impurity’s Coulomb potential can be used as a rough approximation only for Sb
impurities in Ge, making no allowance for the chemical shift. For the P and As impurities, when the potential field of an impurity ion is not Coulombic, the calculations have to be carried out with regard for a chemical shift.


A.A. Selesniov, A.Y. Aleinikov, P.V. Ermakov, N.S. Ganchuk, S.N. Ganchuk, and R.E. Jones, Phys. Solid State 54, 436 (2012).

D.Yu. Voronovich, A.V. Shelopaev, A.B. Zaletov, and I.A. Kaplunov, Vestn. Tv. Gos. Univ. Ser. Fiz. 8, 48 (2010).

C.Y. Sung, L. Ji-Song, N. Toshinori, N. Toshikazu, and T.E. Scott, J. Appl. Phys. 102, 104507 (2007).

K. Masaharu, I. Toshifumi, M. Blanka, S. Krishna, W.H.-S. Philip, and N. Yoshio, IEEE Trans. on Electr. Dev. 57, 1037 (2010).

D.N. Drozdov, A.N. Yablonskii, V.B. Shmagin, Z.F. Krasilnik, N.D. Zakharov, and P. Werner, Fiz. Tekh. Poluprovodn. 43, 332 (2009).

S. Tong, J. Liu, L.J. Wan, and K.L. Wang, Appl. Phys. Lett. 80, 1189 (2002).

R.M. Peleshchak, O.V. Kuzyk, and O.O. Dan'kiv, Ukr. Fiz. Zh. 57, 841 (2012).

F.Kh. Mirzade, K.R. Alakverdiev, and Z.Yu. Salaeva, J. Nanosci. Nanotechnol. 8, 764 (2008).

P.I. Baranskyi, A.V. Fedosov, and G.P. Gaidar, Physical Properties of Silicon and Germanium Crystals in Fields of Effective External Infuence (Nadstyr'ya, Luts'k, 2000) (in Ukrainian).

P.I. Baranskii, V.N. Ermakov, V.V. Kolomoets, and P.F. Nazarchuk, in Abstracts of the 11-th Intern. Conference of IARAPT (ISM AN UkrSSR, Kiev, 1987), p. 127 (in Russian).

V.V. Baidakov, N.N. Grigoryev, V.N. Ermakov, V.V. Kolomoets, and T.A. Kudykina, Fiz. Tekh. Poluprovodn. 17, 370 (1983).

V.N. Ermakov, V.V. Kolomoets, and V.S. Timochuk, Phys. Status Solidi B 116, K77 (1983).

S.V. Luniov, P.F. Nazarchuk, and O.V. Burban, Zh. Fiz. Dosl. 17, 3702 (2013).

S. Luniov, O. Burban, and P. Nazarchuk, J. Adv. Phys. 5, 705 (2014).

G.L. Bir and G.E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).

S.M. Kogan and R. Taskinboev, Fiz. Tekh. Poluprovodn. 17, 1583 (1983).

Ya.S. Budzhak and M.P. Zayachkovskii, Ukr. Fiz. Zh. 13, 1798 (1968).

A.V. Konstantinovich, S.V. Melnychuk, P.I. Savitskii, I.M. Rarenko, and I.A. Konstantinovich, J. Optoelectr. Adv. Mater. 2, 391 (2000).

P.Y. Yu and M. Cardona, Fundamentals of Semiconductors. Physics and Materials Properties of Semiconductors (Springer, Berlin, 1996).

R.G. Wheeler and J.O. Dimmock, Phys. Rev. 125, 1805 (1962).

H. Nara and A. Morita, J. Phys. Soc. Jpn. 21, 1852 (1967).

P.K.Katana, N.V. Dernovich, and Sh.D. Tiron, Fiz. Tekh. Poluprovodn. 4, 1147 (1970).

V.I. Fistul, Heavily Doped Semiconductors (Plenum Press, New York, 1969).

V.L. Bonch-Bruevich and S.G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977) (in Russian).

W. Kohn, Solid State Phys. 5, 257 (1957).

V.V. Baidakov, V.N. Ermakov, N.N. Grigoryev, V.V. Kolomoets, and T.A. Kudykina, Phys. Status Solidi B 122, K163 (1984).

A.E. Gorin, V.N. Ermakov, and V.V. Kolomoets, Fiz. Tekh. Poluprovodn. 29, 1147 (1995).

How to Cite
Luniov, S., Burban, O., & Nazarchuk, P. (2019). Calculation of the Ground-State Ionization Energy for Shallow Donors in n-Ge Single Crystals within the Δ1-Model for the Conduction Band. Ukrainian Journal of Physics, 60(10), 1022.
Solid matter

Most read articles by the same author(s)