Radiation-Induced Damages in Multi-Walled Carbon Nanotubes at Electron Irradiation

  • T. M. Pinchuk-Rugal Taras Shevchenko National University of Kyiv
  • O. P. Dmytrenko Taras Shevchenko National University of Kyiv
  • M. P. Kulish Taras Shevchenko National University of Kyiv
  • L. A. Bulavin Taras Shevchenko National University of Kyiv
  • O. S. Nychyporenko Taras Shevchenko National University of Kyiv
  • Yu. E. Grabovskyi Taras Shevchenko National University of Kyiv
  • M. A. Zabolotnyi Taras Shevchenko National University of Kyiv
  • V. V. Strelchuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • A. S. Nikolenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Shlapatska L.V. Pysarzhevskyi Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine
  • V. M. Tkach V.N. Bakul Institute for Superhard Materials, Nat. Acad. of Sci. of Ukraine
Keywords: multiwalled carbon nanotubes, X-ray diffraction, Raman scattering, electron irradiation, radiation-induced damages, destruction

Abstract

The morphology, X-ray diffraction patterns, and Raman scattering spectra of multi-walled carbon nanotubes (MWCNTs) synthesized by the methods of chemical vapor deposition and low-temperature catalytic conversion of carbon monoxide in the presence of hydrogen have been studied. Depending on the method of nanotube synthesis, a substantial difference of the correlation between their separate layers took place. In the case of MWCNT irradiation with high-energy electrons with the energy Ee = 1.8 MeV to various absorption doses, changes in the structure and the ratio of integral intensities of D- and G-bands in the Raman spectra were observed, which testifies to the enhancement of the interlayer correlation owing to the formation of sp3-hybridized bonds between nanotube layers at radiation-induced damages.

References

A.V. Yeletskii, Usp. Fiz. Nauk 167, 945 (1997). https://doi.org/10.3367/UFNr.0167.199709b.0945

A.V. Yeletskii, Usp. Fiz. Nauk 172, 401 (2002). https://doi.org/10.3367/UFNr.0172.200204b.0401

A.V. Yeletskii, Usp. Fiz. Nauk 174, 1191 (2004). https://doi.org/10.3367/UFNr.0174.200411c.1191

A.V. Yeletskii, Usp. Fiz. Nauk 179, 225 (2009). https://doi.org/10.3367/UFNr.0179.200903a.0225

A.V. Yeletskii, Usp. Fiz. Nauk 180, 897 (2010). https://doi.org/10.3367/UFNr.0180.201009a.0897

E.G. Rakov, Zh. Neorg. Khim. 44, 1827 (1999).

E.G. Rakov, Usp. Khim. 69, 41 (2000). https://doi.org/10.1070/RC2000v069n01ABEH000531

E.G. Rakov, Usp. Khim. 70, 934 (2001). https://doi.org/10.1070/RC2001v070n10ABEH000660

A.I. Vorobyova, Usp. Fiz. Nauk 180, 265 (2010). https://doi.org/10.3367/UFNr.0180.201003d.0265

B.E. Kibride and J.N. Coleman, J. Appl. Phys. 92, 4024 (2002). https://doi.org/10.1063/1.1506397

P.J. Harris, Int. Mater. Rev. 49, 31 (2004). https://doi.org/10.1179/095066004225010505

M. Baibaras and P. Gomes-Romero, J. Nanosci. Nanotechn. 6, 14 (2006).

S.-Y. Fu, Z.-K. Chen, S. Hong, and C.C. Han, Carbon 47, 3192 (2009). https://doi.org/10.1016/j.carbon.2009.07.028

D. Reznik and C.H. Neumann, Phys. Rev. B 52, 116 (1995). https://doi.org/10.1103/PhysRevB.52.116

F. Benueu, C. l'Huillier, and J.-P. Salvetat, Phys. Rev. B 59, 5945 (1999). https://doi.org/10.1103/PhysRevB.59.5945

Published
2019-01-10
How to Cite
Pinchuk-Rugal, T., Dmytrenko, O., Kulish, M., Bulavin, L., Nychyporenko, O., Grabovskyi, Y., Zabolotnyi, M., Strelchuk, V., Nikolenko, A., Shlapatska, V., & Tkach, V. (2019). Radiation-Induced Damages in Multi-Walled Carbon Nanotubes at Electron Irradiation. Ukrainian Journal of Physics, 60(11), 1150. https://doi.org/10.15407/ujpe60.11.1150
Section
Nanosystems

Most read articles by the same author(s)

1 2 > >>