On the Mechanism of Nanostructure Growth on the Surface of CdI2 Crystals

  • I. M. Bolesta Ivan Franko National University of Lviv, Faculty of Electronics, Chair of Radiophysics and Computer Technologies
  • I. N. Rovetskii Ivan Franko National University of Lviv, Faculty of Electronics, Chair of Radiophysics and Computer Technologies
  • Z. M. Yaremko Ivan Franko National University of Lviv, Department of Life Safety
  • I. D. Karbovnyk Ivan Franko National University of Lviv, Faculty of Electronics, Chair of Radiophysics and Computer Technologies
  • S. R. Velgosh Ivan Franko National University of Lviv, Faculty of Electronics, Chair of Radiophysics and Computer Technologies
  • M. V. Partyka Ivan Franko National University of Lviv, Faculty of Physics, Chair of Solid State Physics
  • N. V. Gloskovskaya Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. M. Lesivtsiv Ivan Franko National University of Lviv, Faculty of Electronics, Chair of Radiophysics and Computer Technologies
Keywords: atomic force microscopy, van der Waals surface, nanopores, nanoclusters, diffusion

Abstract

Atomic force microscopy studies of the dynamics of the nanostructure formation on a van der Waals surface of CdI2 crystals during aging in air environment under near-equilibrium thermodynamic conditions have been carried out. The nanostructure growth process is found to consist of three stages. At the first stage, there appear nano-sized pores due to the lattice dissolution at the outcrops of screw dislocations or other structural defects. At the second stage, the cone-shaped nanoclusters arise and grow in those nano-sized pores. At the third stage, the nanoclusters coagulate. The growth kinetics of cone-shaped nanoclusters is described by a diffusion model based on the interdiffusion approximation for the components. The growth rate of nanoclusters is shown to depend on the time evolution of the concentration gradient of Cd2+ ions in the near-reaction zone.

References

K. Ueno, K. Sasaki, K. Saiki et al., Jpn. J. Appl. Phys. 38, 511 (1999). https://doi.org/10.1143/JJAP.38.511

S.I. Drapak, A.P. Bakhtinov, S.V. Gavrilyuk et al., Fiz. Tverd. Tela 48, 1515 (2006).

O. Lang, R. Schlaf, Y. Tomm et al., J. Appl. Phys. 75, 7805 (1994). https://doi.org/10.1063/1.356562

A.I. Dmitriev, Zh. Tekhn. Fiz. 82, 114 (2012).

A.I. Dmitriev, V.V. Vishnyak, G.V. Lashkarev et al., Fiz. Tverd. Tela 53, 579 (2011).

A.P. Bakhtinov, Z.R. Kudrinskii, and O.S. Litvin, Fiz. Tverd. Tela 53, 2045 (2011).

O.A. Balitskii, Mater. Lett. 60, 594 (2006). https://doi.org/10.1016/j.matlet.2005.09.037

O.A. Balitskii, J. Electr. Microsc. 55, 261 (2006). https://doi.org/10.1093/jmicro/dfl031

R. Singh, S. Samanta, A. Narlikar et al., J. Cryst. Growth 204, 233 (1999). https://doi.org/10.1016/S0022-0248(99)00185-2

R. Singh, S. Samanta, A. Narlikar et al., Bull. Mater. Sci. 23, 131 (2000). https://doi.org/10.1007/BF02706554

B. Kumar and N. Sinha, Cryst. Res. Technol. 40, 887 (2005). https://doi.org/10.1002/crat.200410451

R. Singh, S. Samanta, A. Narlikar et al., Surf. Sci. 422, 188 (1999). https://doi.org/10.1016/S0039-6028(98)00877-2

N.-Y. Cui, N.M.D. Brown, and A. McKinley, Appl. Surf. Sci. 152, 266 (1999). https://doi.org/10.1016/S0169-4332(99)00325-6

N. Sallacan, R. Popovitz-Biro, and R. Tenne, Solid State Sci. 5, 905 (2003). https://doi.org/10.1016/S1293-2558(03)00110-9

I.M. Bolesta, R.I. Gritskiv, Yu.R. Datsyuk et al., Ukr. Fiz. Zh. 48, 1 (2003).

I.M. Bolesta, I.N. Rovetskyj, I.D. Karbovnyk et al., Techn. Phys. Lett. 39, 463 (2013). https://doi.org/10.1134/S1063785013050180

Q.-J. Liu, Z.-T. Liu, and L.-P. Feng, Phys. Status Solidi B 248, 1629 (2011). https://doi.org/10.1002/pssb.201046481

Wide-Gap Layered Crystals and Their Physical Properties, edited by A.B. Lyskovich (Vyshcha Shkola, Lviv, 1982) (in Russian).

A.L. Efros, Physics and Geometry of Disorder: Percolation Theory (Mir Publishers, Moscow, 1986).

Published
2019-01-10
How to Cite
Bolesta, I., Rovetskii, I., Yaremko, Z., Karbovnyk, I., Velgosh, S., Partyka, M., Gloskovskaya, N., & Lesivtsiv, V. (2019). On the Mechanism of Nanostructure Growth on the Surface of CdI2 Crystals. Ukrainian Journal of Physics, 60(11), 1143. https://doi.org/10.15407/ujpe60.11.1143
Section
Nanosystems

Most read articles by the same author(s)