Role of Two-Photon Electronic Transitions in the Formation of Active Dynamic Conductivity in a Three-Barrier Resonance Tunneling Structure with an Applied DC Electric Field

  • I. V. Boyko I. Pulyui National Technical University of Ternopil
Keywords: resonance tunneling structure, quantum cascade laser, quantum cascade detector, active dynamic conductivity, two-photon electronic transition

Abstract

The theory of active dynamic conductivity in a three-barrier resonance tunneling structure subjected to the combined action of a weak electromagnetic field and a longitudinal dc electric field is developed with regard for the contribution of laser-induced one- and two-photon electronic transitions with different frequencies. For this purpose, the full Schr¨odinger equation is solved in the effective mass approximation and with the use of the model of rectangular potential wells and barriers for an electron. The maximum contribution of two-photon transitions to the formation of the total active dynamic conductivity in laser-induced transitions is shown not to exceed 38%. Geometric configurations of the resonance tunneling structure, for which the laser radiation intensity increases due to laser-induced two-photon electronic transitions, are determined.

References

D. Bachmann, M. Rosch, C. Deutsch, M. Krall, G. Scalari, M. Beck, J. Faist, K. Unterrainer, and J. Darmo, Appl. Phys. Lett. 105, 181118 (2014). http://dx.doi.org/10.1063/1.4901316

J.M. Wolf, A. Bismuto, M. Beck, and J. Faist, Opt. Express 22, 2111 (2014). http://dx.doi.org/10.1364/OE.22.002111 http://www.ncbi.nlm.nih.gov/pubmed/24515220

A. Buffaz, M. Carras, L. Doyennette, A. Nedelcu, X. Marcadet, and V. Berger, Appl. Phys. Lett. 96, 172101 (2010). http://dx.doi.org/10.1063/1.3409139

D. Hofstetter, F.R. Giorgetta, E. Baumann, Q. Yang, C. Manz, and K. Kohler, Appl. Phys. Lett. 93, 221106 (2008). http://dx.doi.org/10.1063/1.3036897

M.V. Tkach, Ju.O. Seti, I. V. Boyko, and O.M. Voitsekhivska, Condens. Matter Phys. 16, 33701 (2013). http://dx.doi.org/10.5488/CMP.16.33701

M. Tkach, Ju.O. Seti, V.O. Matiek, and I.V. Boyko, Zh. Fiz. Dosl. 16, 4701 (2012).

E. Saczuk and J.Z. Kaminski, Phys. Status Solidi B 240, 603 (2003). http://dx.doi.org/10.1002/pssb.200301898

E. Saczuk and J.Z. Kaminski, Laser Phys. 15, 1691 (2005).

N.V. Tkach and Ju.A. Seti, JETP Lett. 95, 271 (2012). http://dx.doi.org/10.1134/S0021364012050074

N.V. Tkach and Ju.A. Seti, Fiz. Tekh. Poluprovodn. 48, 610 (2014).

A.B. Pashkovskii, JETP Lett. 89, 30 (2009). http://dx.doi.org/10.1134/S002136400901007X

A.B. Pashkovskii, Fiz. Tekh. Poluprovodn. 45, 759 (2011).

N.V. Tkach and Ju.A. Seti, Low Temp. Phys. 35, 556 (2009). http://dx.doi.org/10.1063/1.3170931

Y. Ando and T. Itoh, J. Appl. Phys. 61, 1497 (1987). http://dx.doi.org/10.1063/1.338082

S. Kumar, C. Wang, I. Chan, Q. Hu, and J.L. Reno, Appl. Phys. Lett. 95, 141110 (2009). http://dx.doi.org/10.1063/1.3243459

Published
2019-01-08
How to Cite
Boyko, I. (2019). Role of Two-Photon Electronic Transitions in the Formation of Active Dynamic Conductivity in a Three-Barrier Resonance Tunneling Structure with an Applied DC Electric Field. Ukrainian Journal of Physics, 61(1), 66. https://doi.org/10.15407/ujpe61.01.0066
Section
Nanosystems