Spin Waves in a Ferromagnetic Nanotube. Account of Dissipation and Spin-Polarized Current

  • V. V. Kulish National Technical University of Ukraine “Kyiv Polytechnic Institute”, Chair of General and Experimental Physics
Keywords: spin wave, ferromagnetic nanotube, dipole-exchange theory, nanomagnetism, spin-polarized current

Abstract

Dipole-exchange spin waves in a ferromagnetic nanotube with a circular cross-section have been studied in the presence of a spin-polarized electric current. The exchange and dipole-dipole magnetic interactions, anisotropy, dissipation effects, and the influence of a spin-polarized current are taken into consideration. An equation for the magnetic potential of spin excitations in the system concerned is derived, and the dispersion relation for spin waves is obtained. Depending on its direction, the spin-polarized current is demonstrated to either strengthen or weaken the effective dissipation. A condition, under which the presence of the spin-polarized current can lead to a generation of a spin wave, is determined.

References

A.I. Akhiezer, V.G. Bar'yakhtar, and S.V. Peletminskii, Spin Waves (North Holland, Amsterdam, 1968).

V.V. Kruglyak, S.O. Demokritov, and D. Grundler, J. Phys. D 43, 264001 (2010). http://dx.doi.org/10.1088/0022-3727/43/26/264001

R.P. van Stapele, F.J.A.M. Greidanus, and J.W. Smits, J. Appl. Phys. 57, 1282 (1985). http://dx.doi.org/10.1063/1.334527

B.A. Kalinikos, N.G. Kovshikov, and A.N. Slavin, J. Appl. Phys. 69, 5712 (1991). http://dx.doi.org/10.1063/1.347896

M. Bauer, O. Buttner, S.O. Demokritov, B. Hillebrands, V. Grimalsky, Yu. Rapoport, and A.N. Slavin, Phys. Rev. Lett. 81, 3769 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.3769

R. Arias and D.L. Mills, Phys. Rev. B 63, 134439 (2001). http://dx.doi.org/10.1103/PhysRevB.63.134439

R. Skomski, M. Chipara, and D.J. Sellmyer, J. Appl. Phys. 93, 7604 (2003). http://dx.doi.org/10.1063/1.1558691

P.C. Fletcher and C. Kittel, Phys. Rev. 120, 2004 (1960). http://dx.doi.org/10.1103/PhysRev.120.2004

S.M. Cherif, Y. Roussigne, C. Dugautier, and P. Moch, J. Magn. Magn. Mater. 222, 337 (2000). http://dx.doi.org/10.1016/S0304-8853(00)00581-3

K.Yu. Guslienko and A.N. Slavin, J. Appl. Phys. 87, 6337 (2000). http://dx.doi.org/10.1063/1.372698

F.G. Aliev, J.F. Sierra, A.A. Awad, G.N. Kakazei, D.-S. Han, S.-K. Kim, V. Metlushko, B. Ilic, and K.Y. Guslienko, Phys. Rev. B 79, 174433 (2009). http://dx.doi.org/10.1103/PhysRevB.79.174433

J. Jorzick, S.O. Demokritov, C. Mathieu, B. Hillebrands, B. Bartenlian, C. Chappert, F. Rousseaux, and A.N. Slavin, Phys. Rev. B 60, 15194 (1999). http://dx.doi.org/10.1103/PhysRevB.60.15194

S. Neusser and D. Grundler, Adv. Mat. 21, 2927 (2009). http://dx.doi.org/10.1002/adma.200900809

C. Chappert, A. Fert, and F.N. Van Dau, Nat. Mater. 6, 813 (2007). http://dx.doi.org/10.1038/nmat2024 http://www.ncbi.nlm.nih.gov/pubmed/17972936

T. Schneider, A.A. Serga, B. Leven, B. Hillebrands, R.L. Stamps, and M.P. Kostylev, Appl. Phys. Lett. 92, 022505 (2008). http://dx.doi.org/10.1063/1.2834714

Y.C. Sui, R. Skomski, K.D. Sorge, and D.J. Sellmyer, Appl. Phys. Lett. 84, 1525 (2004). http://dx.doi.org/10.1063/1.1655692

K. Nielsch, F.J. Castano, C.A. Ross, and R. Krishnan, J. Appl. Phys. 98, 034318 (2005). http://dx.doi.org/10.1063/1.2005384

K. Nielsch, F.J. Castano, S. Matthias, W. Lee, and C.A. Ross, Adv. Eng. Mat. 7, 217 (2005). http://dx.doi.org/10.1002/adem.200400192

P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, and E.E. Vogel, Appl. Phys. Lett. 90, 102501 (2007). http://dx.doi.org/10.1063/1.2437655

Z.K. Wang, H.S. Lim, H.Y. Liu, S.C. Ng, M.H. Kuok, L.L. Tay, D.J. Lockwood, M.G. Cottam, K.L. Hobbs, P.R. Larson, J.C. Keay, G.D. Lian, and M.B. Johnson, Phys. Rev. Lett. 94, 137208 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.137208 http://www.ncbi.nlm.nih.gov/pubmed/15904029

R. Sharif, S. Shamaila, M. Ma, L.D. Yao, R.C. Yu, X.F. Han, and M. Khaleeq-ur-Rahman, Appl. Phys. Lett. 92, 032505 (2008). http://dx.doi.org/10.1063/1.2836272

Y. Ye and B. Geng, Crit. Rev. Solid State Mater. Sci. 37, 75 (2012). http://dx.doi.org/10.1080/10408436.2011.613491

A.K. Salem, P.C. Searson, and K.W. Leong, Nat. Mater. 2, 668 (2003). http://dx.doi.org/10.1038/nmat974 http://www.ncbi.nlm.nih.gov/pubmed/12970757

C.C. Berry and A.S.G. Curtis, J. Phys. D 36, R198 (2003). http://dx.doi.org/10.1088/0022-3727/36/13/203

H. Leblond and V. Veerakumar, Phys. Rev. B 70, 134413 (2004). http://dx.doi.org/10.1103/PhysRevB.70.134413

A.L. Gonz’alez, P. Landeros, and A.S. N’u˜nez, J. Magn. ´ Magn. Mater. 322, 530 (2010). http://dx.doi.org/10.1016/j.jmmm.2009.10.010

J.A. Ot’alora, J.A. L’opez-L’opez, A.S. N’u˜nez, and P. Landeros, J. Phys.: Condens. Matter 24, 436007 (2012).

Yu.I. Gorobets and V.V. Kulish, Ukr. Fiz. Zh. 59, 544 (2014).

C. Wu, Spin Wave Resonance and Relaxation in Microwave Magnetic Multilayer Structures and Devices, Ph.D. thesis (New York, 2008).

J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). http://dx.doi.org/10.1016/0304-8853(96)00062-5

L. Berger, Phys. Rev. B 54, 9353 (1996). http://dx.doi.org/10.1103/PhysRevB.54.9353

A. Slavin and V. Tiberkevich, IEEE Trans. Magn. 44, 1916 (2008). http://dx.doi.org/10.1109/TMAG.2008.924537

A. Slavin and V. Tiberkevich, IEEE Trans. Magn. 45, 1875 (2009). http://dx.doi.org/10.1109/TMAG.2008.2009935

Published
2019-01-08
How to Cite
Kulish, V. (2019). Spin Waves in a Ferromagnetic Nanotube. Account of Dissipation and Spin-Polarized Current. Ukrainian Journal of Physics, 61(1), 59. https://doi.org/10.15407/ujpe61.01.0059
Section
Nanosystems