Frequency Response of Split-Ring Resonators at Different Types of Excitations in Ka-Band

  • V. S. Chornyi Faculty of Radiophysics, Electronics, and Computer Systems, Taras Shevchenko National University of Kyiv
  • S. L. Skripka Faculty of Radiophysics, Electronics, and Computer Systems, Taras Shevchenko National University of Kyiv
  • O. Y. Nechyporuk Faculty of Radiophysics, Electronics, and Computer Systems, Taras Shevchenko National University of Kyiv
Keywords: split-ring resonator, Ka-band, metamaterial, cross-polarization effect

Abstract

The frequency response of split-ring resonators (SRRs) at different types of excitations in the Ka-band has been investigated. The constructive parameters of SRRs are obtained from the electromagnetic simulation. Two unilateral and two bilateral samples of SRRs are experimentally investigated at the magnetic or electric excitation and a combination of both types of excitation. In order to get the widest resonance band, it is necessary to use a combination of magnetic and electric excitations. The resulting resonance width is 10 GHz. It is demonstrated that bilateral structures, despite the theoretical assumptions, may get a residual electric resonance. Since the depth of the resonance is less than -6 dB, it can be neglected, but the influence of combining two excitations must be taken into account.

References

V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968). http://dx.doi.org/10.1070/PU1968v010n04ABEH003699

J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.3966 http://www.ncbi.nlm.nih.gov/pubmed/11041972

G. Dolling, M. Wegener, C.M. Soukoulis, and S. Linden, Opt. Lett. 32, 53 (2007). http://dx.doi.org/10.1364/OL.32.000053 http://www.ncbi.nlm.nih.gov/pubmed/17167581

D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.4184 http://www.ncbi.nlm.nih.gov/pubmed/10990641

R. Marqu’es, F. Mart’in, and M. Sorola, Metamaterials with Negative Parameters. Theory, Design, and Microwave Applications (Wiley-Interscience, New York, 2007). http://dx.doi.org/10.1002/9780470191736

D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, and D.R. Smith, Science 214, 977 (2006). http://dx.doi.org/10.1126/science.1133628 http://www.ncbi.nlm.nih.gov/pubmed/17053110

W. Rotman, IRE Trans. Ant. Prop. 10, 82 (1962). http://dx.doi.org/10.1109/TAP.1962.1137809

J. Kim, C.S. Cho, and J.W. Lee, Electron. Lett. 42, 315 (2006). http://dx.doi.org/10.1049/el:20063713

A. Grbic and G. Eleftheriades, Phys. Rev. Lett. 92, 110401 (2004). http://dx.doi.org/10.1103/PhysRevLett.92.117403 http://www.ncbi.nlm.nih.gov/pubmed/15089166

B.D.F. Casse, W.T. Lu, Y.J. Huang, E. Gultepe, L. Menon, and S. Sridhara, Phys. Rev. Lett. 96, 023114 (2010).

I. Gil, F. Mart’in, X. Rottenberg, and W. De Raedt, Electron. Lett. 43, 1153 (2007). http://dx.doi.org/10.1049/el:20072164

N.J. Mahdi, Mic. Opt. Tech. Lett. 53, 1961 (2011). http://dx.doi.org/10.1002/mop.26203

K.C. Yoon, J.H. Kim, and J.C. Lee, Mic. Opt. Tech. Lett. 53, 2174 (2011). http://dx.doi.org/10.1002/mop.26219

R.A. Shelby, D.R. Smith, and S. Schultz, Science 292, 77 (2001). http://dx.doi.org/10.1126/science.1058847 http://www.ncbi.nlm.nih.gov/pubmed/11292865

I. Gil, J. Bonache, J. Garc’ia-Garc’ia, and F. Mart’in, IEEE Trans. Microwave Theory Tech. 54, 2665 (2006). http://dx.doi.org/10.1109/TMTT.2006.872949

K. Aydin and E. Ozbay, J. Appl. Phys. 101, 024911 (2006).

R. Marqu’es, F. Medina, R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).

L. Solymar and E. Shamonina Waves in Metamaterials (Oxford Univ. Press, Oxford, 2009).

E. Ekmekci and G. Turhan-Sayan, Prog. Electromag. Res. 12, 35 (2009). http://dx.doi.org/10.2528/PIERB08120405

H. Nornikman, O.T. Kean, A.B. Hisham, A.A.M.Z. Abidin, S.W. Yik, and O.M. Azlishah, Australian J. Basic Appl. Sci. 8, 262 (2014).

M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, Microwave Opt. Tech. Lett. 44, 133 (2005). http://dx.doi.org/10.1002/mop.20567

J.D. Baena et al., IEEE Trans. Microwave Theory Tech. 53, 1451 (2005). http://dx.doi.org/10.1109/TMTT.2005.845211

V. Chornyi, O. Nechyporuk, S. Skripka, and V. Danilov, Bulletin of T. Shevchenko Nat. Univ. Kyiv. Series Radioph. Electr. 19, 63 (2013).

Published
2019-01-08
How to Cite
Chornyi, V., Skripka, S., & Nechyporuk, O. (2019). Frequency Response of Split-Ring Resonators at Different Types of Excitations in Ka-Band. Ukrainian Journal of Physics, 61(1), 44. https://doi.org/10.15407/ujpe61.01.0044
Section
Solid matter