Energy Expenditure for Water Molecule Ionization by Electron Impact in Weakly Ionized Plasma

  • Yu. V. Kovtun National Science Center “Kharkiv Institute of Physics and Technology”, Nat. Acad. of Sci. of Ukraine
Keywords: ionization cost, ionization degree, water molecule, electrons

Abstract

The energy balance of the water molecule ionization by a monoenergetic electron beam with the energy of primary electrons in the interval of 15–1000 eV has been calculated. The dependences of the ionization cost on the water ionization degree within the interval from 0 to 0.1 are obtained. The ionization cost is shown to increase with the ionization degree. In particular, for a primary electron energy of 1000 eV, it increases from 25.26 to 52.45 eV in the examined ionization degree interval.

References

M. Larsson, W.D. Geppert, and G. Nyman, Rep. Prog. Phys. 75, 066901 (2012). https://doi.org/10.1088/0034-4885/75/6/066901

D.W. Savin, N.S. Brickhouse, J.J. Cowan et al., Rep. Prog. Phys. 75, 036901 (2012). https://doi.org/10.1088/0034-4885/75/3/036901

R.K. Hobbie and B.J. Roth, Intermediate Physics for Medicine and Biology (Springer, New York, 2007). http://www.ncbi.nlm.nih.gov/pubmed/PMC2094070

V.M. Byakov and S.V. Stepanov, Usp. Fiz. Nauk 176, 487 (2006). https://doi.org/10.3367/UFNr.0176.200605b.0487

D.X. Liu, P. Bruggeman, F. Iza et al., Plasma Sources Sci. Technol. 19, 025018 (2010). https://doi.org/10.1088/0963-0252/19/2/025018

G.D. Alkhazov, Zh. Tekhn. Fiz. 41, 2513 (1971).

S. Samukawa, M. Hori, S. Rauf et al., J. Phys. D. 45, 253001 (2012). https://doi.org/10.1088/0022-3727/45/25/253001

P. Bruggeman and C. Leys, J. Phys. D. 42, 053001 (2009). https://doi.org/10.1088/0022-3727/42/5/053001

Y. Yang, A. Fridman, and Y.I. Cho, Adv. Heat Transf. 42, 179 (2010). https://doi.org/10.1016/S0065-2717(10)42003-1

A.A. General and Yu.O. Shpenyk, Ukr. Fiz. Zh. 58, 116 (2013).

E.I. Skibenko, V.B. Yuferov, I.V. Buravilov et al., Ukr. J. Phys. 53, 356 (2008).

E.I. Skibenko, Yu.V. Kovtun, A.I. Skibenko, and V.B. Yuferov, in Proceedings of the 15-th International Conference on Physics of Pulse Discharges in Condensed Media, Mykolaiv (2011), p. 70 (in Russian).

E.I. Skibenko, Yu.V. Kovtun, A.I. Skibenko, and V.B. Yuferov, Tech. Phys. 57, 188 (2012). https://doi.org/10.1134/S1063784212020260

Yu.V. Kovtun, E.I. Skibenko, and V.B. Yuferov, in Proceedings of the 16-th International Conference on Physics of Pulse Discharges in Condensed Media, Mykolaiv (2013), p. 30 (in Russian).

V.Ya. Ushakov, V.F. Klimkin, and S.M. Korobeynikov, Impulse Breakdown of Liquids (Springer, Berlin, 2007).

Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005). https://doi.org/10.1063/1.1799251

C.G. Elles, A.E. Jailaubekov, R.A. Crowell, and S.E. Bradforth, J. Chem. Phys. 125, 044515 (2006). https://doi.org/10.1063/1.2217738

J.B. Hasted, Physics of Atomic Collisions (Butterworths, London, 1964).

H.S.W. Massey and E.H.S. Burhop, Electronic and Ionic Impact Phenomena (Clarendon Press, Oxford, 1952).

A. Dalgarno, Min Yan, and Weihong Liu, Astrophys. J. Suppl. 125, 237 (1999). https://doi.org/10.1086/313267

A. Dalgarno and G. Lejeune, Planet. Space Sci. 19, 1653 (1971). https://doi.org/10.1016/0032-0633(71)90126-7

J.L. Fox, A. Dalgarno, and G.A. Victor, Planet. Space Sci. 25, 71 (1977). https://doi.org/10.1016/0032-0633(77)90119-2

T.E. Cravens, G.A. Victor, and A. Dalgarno, Planet. Space Sci. 23, 1059 (1975). https://doi.org/10.1016/0032-0633(75)90196-8

J.L. Fox and A. Dalgarno, Planet. Space Sci. 27, 491 (1979). https://doi.org/10.1016/0032-0633(79)90126-0

J.L. Fox and G.A. Victor, Planet. Space Sci. 36, 329 (1988). https://doi.org/10.1016/0032-0633(88)90123-7

Weihong Liu and G.A. Victor, Astrophys. J. 435, 909 (1994). https://doi.org/10.1086/174872

T. Shirai, T. Tabata, and H. Tawara, At. Data Nucl. Data Tabl. 79, 143 (2001). https://doi.org/10.1006/adnd.2001.0866

Y. Itikawa and N. Mason, Phys. Rep. 414, 1 (2005). https://doi.org/10.1016/j.physrep.2005.04.002

J. Tennyson, N.F. Zobov, R. Williamson, and O.L. Polyansky, J. Phys. Chem. Ref. Data. 30, 735 (2001). https://doi.org/10.1063/1.1364517

M.A. Khakoo, C. Winstead, and V. McKoy, Phys. Rev. A 79, 052711 (2009). https://doi.org/10.1103/PhysRevA.79.052711

P.A. Thorn, M.J. Brunger, P.J.O. Teubner et al., J. Chem. Phys. 126, 064306 (2007). https://doi.org/10.1063/1.2434166

P.A. Thorn, M.J. Brunger, H. Kato et al., J. Phys. B 40, 697 (2007). https://doi.org/10.1088/0953-4075/40/4/005

P. Thorn, L. Campbell, and M. Brunger, PMC Physics B 2, 1 (2009). https://doi.org/10.1186/1754-0429-2-1

W. Lotz, Z. Phys. 206, 205 (1967). https://doi.org/10.1007/BF01325928

S.Y. Truong, A.J. Yencha, A.M. Juarez et al., Chem. Phys. 355, 183 (2009). https://doi.org/10.1016/j.chemphys.2008.12.009

S.Y. Truong, A.J. Yencha, A.M. Juares et al., Chem. Phys. Lett. 474, 41 (2009). https://doi.org/10.1016/j.cplett.2009.04.036

T. Harb, W. Kedzierski, and J.W. McConkey, J. Chem. Phys. 115, 5507 (2001). https://doi.org/10.1063/1.1397327

Kaijun Yuan, Lina Cheng, Yuan Cheng et al., J. Chem. Phys. 131, 074301 (2009). https://doi.org/10.1063/1.3168398

A.N. Zavilopulo, F.F. Chipaev, and O.B. Shpenik, Zh. Tekhn. Fiz. 75, 19 (2005).

S.W.J. Scully, J.A. Wyer,V. Senthil et al., Phys. Rev. A 73, 040701 (2006). https://doi.org/10.1103/PhysRevA.73.040701

H. Sann, T. Jahnke, T. Havermeier et al., Phys. Rev. Lett.106, 133001 (2011). https://doi.org/10.1103/PhysRevLett.106.133001

H.B. Pedersen, C. Domesle, L. Lammich et al., Phys. Rev. A 87, 013402 (2013). https://doi.org/10.1103/PhysRevA.87.013402

F. Fremont, C. Leclercq, A. Hajaji et al., Phys. Rev. A 72, 042702 (2005). https://doi.org/10.1103/PhysRevA.72.042702

S.J. King and S.D. Price, Int. J. Mass Spectrom. 277, 84 (2008). https://doi.org/10.1016/j.ijms.2008.06.004

D.J. Haxto, C.W. McCurdy, and T.N. Rescigno, Phys. Rev. A 75, 012710 (2007). https://doi.org/10.1103/PhysRevA.75.012710

J.M. Valentine and S.C. Curran, Rep. Prog. Phys. 21, 1 (1958). https://doi.org/10.1088/0034-4885/21/1/301

R.H. Garvey and A.E.S. Green, Phys. Rev. A 14, 946 (1976). https://doi.org/10.1103/PhysRevA.14.946

S.P. Khare, J. Phys. B 3, 971 (1970). https://doi.org/10.1088/0022-3700/3/7/011

S.P. Khare, Rad. Res. 64, 106 (1975). https://doi.org/10.2307/3574172

Y.-K. Kim and M.E. Rudd, Phys. Rev. A 50, 3954 (1994). https://doi.org/10.1103/PhysRevA.50.3954

W. Hwanga, Y.-K. Kim, and M.E. Rudd, J. Chem. Phys. 104, 2956 (1996). https://doi.org/10.1063/1.471116

M.A. Bolorizadeh and M.E. Rudd, Phys. Rev. A 33, 882 (1986). https://doi.org/10.1103/PhysRevA.33.882

G.J. Kutcher and A.E.S. Green, Rad. Res. 67, 408 (1976). https://doi.org/10.2307/3574338

C. Champion, Phys. Med. Biol. 48, 2147 (2003). https://doi.org/10.1088/0031-9155/48/14/308

J.A. La Verne and A. Mozumder, Rad. Res. 131, 1 (1992). https://doi.org/10.2307/3578309

D. Combecher, Rad. Res. 84, 189 (1980). https://doi.org/10.2307/3575293

G.P. Stonell, M. Marshall, and J.A. Simmon, Rad. Res. 136, 341 (1993). https://doi.org/10.2307/3578546

D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Taylor and Francis, Boca Raton, FL, 2010). http://www.ncbi.nlm.nih.gov/pubmed/PMC3023291

Published
2019-01-08
How to Cite
Kovtun, Y. (2019). Energy Expenditure for Water Molecule Ionization by Electron Impact in Weakly Ionized Plasma. Ukrainian Journal of Physics, 61(1), 12. https://doi.org/10.15407/ujpe61.01.0012
Section
Plasmas and gases