Virial Coefficients of Morse Potential

  • M. V. Ushcats Admiral Makarov National University of Shipbuilding
  • S. J. Ushcats Admiral Makarov National University of Shipbuilding
  • A. A. Mochalov Admiral Makarov National University of Shipbuilding
Keywords: Morse potential, virial coefficient, irreducible cluster integral, Mayer sampling

Abstract

Using the numerical quadrature integration method and a modification of the Mayer sampling Monte Carlo technique proposed recently, the virial coefficients of the known three-parameter Morse potential have been calculated to the seventh order inclusive for potential parameter, aD, values of 3.0, 4.0, 6.0, 8.0, and 10.0. At low temperatures, a certain regularity in the behavior of the virial coefficients of all orders (beginning from the third one) is revealed for various aD-values. This regularity can be approximated by an equation similar to that previously obtained for the Lennard-Jones (12–6) and modified Lennard-Jones models.

References

J.E. Mayer and M.G. Mayer, Statistical Mechanics (Wiley, New York, 1977).

R.K. Pathria, Statistical Mechanics (ButterworthHeinemann, Oxford, 1997).

N. N. Bogoliubov, Problems of Dynamic Theory in Statistical Physics (Interscience, New York, 1962).

M.V. Ushcats, Visn. Kharkiv. Nats. Univ. No. 1020, 6 (2012).

M.V. Ushcats, Phys. Rev. Lett. 109, 040601 (2012). https://doi.org/10.1103/PhysRevLett.109.040601 https://www.ncbi.nlm.nih.gov/pubmed/23006071

M.V. Ushcats, J. Chem. Phys. 138, 094309 (2013). https://doi.org/10.1063/1.4793407 https://www.ncbi.nlm.nih.gov/pubmed/23485296

M.V. Ushcats, Phys. Rev. E 87, 042111 (2013). https://doi.org/10.1103/PhysRevE.87.042111 https://www.ncbi.nlm.nih.gov/pubmed/23679377

V.M. Bannur, Physica A 419, 675 (2015). https://doi.org/10.1016/j.physa.2014.10.053

A.J. Schultz and D.A. Kofke, Mol. Phys. 107, 2309 (2009). https://doi.org/10.1080/00268970903267053

A.J. Schultz, N.S. Barlow, V.Chaudhary, and D.A. Kofke, Mol. Phys. 111, 535 (2013). https://doi.org/10.1080/00268976.2012.730642

M.V. Ushcats, Ukr. J. Phys. 59, 737 (2014). https://doi.org/10.15407/ujpe59.07.0737

M.V. Ushcats, Ukr. J. Phys. 59, 172 (2014). https://doi.org/10.15407/ujpe59.02.0172

M.V. Ushcats and K.D. Yevfymko, Visn. Odess. Nats. Univ. Mat. Mekh. 19, 37 (2014).

M.V. Ushcats, J. Chem. Phys. 140, 234309 (2014). https://doi.org/10.1063/1.4882896 https://www.ncbi.nlm.nih.gov/pubmed/24952543

J.Q. Broughton and G.H. Gilmer, J. Chem. Phys. 79, 5095 (1983). https://doi.org/10.1063/1.445633

T. Sakagami and K. Fuchizaki, J. Phys.: Conf. Ser. 215, 012123 (2010). https://doi.org/10.1088/1742-6596/215/1/012123

Y. Asano and K. Fuchizaki, J. Chem. Phys.137, 174502 (2012). https://doi.org/10.1063/1.4764855 https://www.ncbi.nlm.nih.gov/pubmed/23145734

M.V. Ushcats, J. Chem. Phys. 141, 101103 (2014). https://doi.org/10.1063/1.4895126 https://www.ncbi.nlm.nih.gov/pubmed/25217895

J. K. Singh, J. Adhikari, and S. K. Kwak, Fluid Phase Equilibr. 248, 1 (2006). https://doi.org/10.1016/j.fluid.2006.07.010

E.M. Apfelbaum, J. Chem. Phys. 134, 194506 (2011). https://doi.org/10.1063/1.3590201 https://www.ncbi.nlm.nih.gov/pubmed/21599072

P.M. Morse, Phys. Rev. 34, 57 (1929). https://doi.org/10.1103/PhysRev.34.57

M.V. Ushcats and A.A. Gaisha, Visn. Kharkiv. Nats. Univ. 18, 67 (2013).

W G. Hoover and A.G. De Rocco, J. Chem. Phys. 36, 3141 (1962). https://doi.org/10.1063/1.1732443

D. Frenkel and B. Smit, Understanding Molecular Simulation – From Algorithms to Applications (Academic Press, New York, 2002).

S.S. Xantheas and J.C. Werhahn, J. Chem. Phys. 141, 064117 (2014). https://doi.org/10.1063/1.4891819 https://www.ncbi.nlm.nih.gov/pubmed/25134561

Published
2019-01-08
How to Cite
Ushcats, M., Ushcats, S., & Mochalov, A. (2019). Virial Coefficients of Morse Potential. Ukrainian Journal of Physics, 61(2), 160. https://doi.org/10.15407/ujpe61.02.0160
Section
General problems of theoretical physics