Raman Scattering in the Process of Tin-Induced Crystallization of Amorphous Silicon

  • V. Neimash Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • G. Dovbeshko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • P. Shepelyavyi V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. Danko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. Melnyk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • M. Isaiev Taras Shevchenko National University of Kyiv, Faculty of Physics
  • A. Kuzmich Taras Shevchenko National University of Kyiv, Faculty of Physics
Keywords: solar cell, thin films, nanocrystals, silicon, tin, metal-induced crystallization

Abstract

Metal-induced crystallization in Si–Sn–Si thin film structures has been studied, by using the Raman scattering at various light powers. The Raman spectra are used to monitor the temperature, size, and concentration of Si crystals formed in the amorphous Si matrix. A significant acceleration of the metal-induced crystallization in Si–Sn–Si structures at their laser-assisted annealing in comparison with their annealing in dark is revealed. A basic possibility of the “on line” monitoring of the size and the concentration of Si nanocrystals in the course of their formation is demonstrated.

References

M.C. Beard, J.M. Luther, and A.J. Nozik, Nat. Nano 9, 951 (2014). https://doi.org/10.1038/nnano.2014.292 https://www.ncbi.nlm.nih.gov/pubmed/25466532

Z.I. Alferov, V.M. Andreev, and V.D. Rumyantsev, Semiconductors 38, 899 (2004). https://doi.org/10.1134/1.1787110

B. Yan, G. Yue, X. Xu, J. Yang, and S. Guha, Phys. Status Solidi A 207, 671 (2010). https://doi.org/10.1002/pssa.200982886

N.S. Lewis, Science 315, 798 (2007). https://doi.org/10.1126/science.1137014 https://www.ncbi.nlm.nih.gov/pubmed/17289986

R. Søndergaard, M. H¨osel, D. Angmo, T.T. Larsen-Olsen, and F.C. Krebs, Mater. Today 15, 36 (2012). https://doi.org/10.1016/S1369-7021(12)70019-6

M. Birkholz, B. Selle, E. Conrad, K. Lips, and W. Fuhs, J. Appl. Phys. 88, 4376 (2000). https://doi.org/10.1063/1.1289783

B. Rech, T. Roschek, J. M¨uller, S. Wieder, and H. Wagner, Sol. Energy Mater. Sol. Cells 66, 267 (2001). https://doi.org/10.1016/S0927-0248(00)00183-5

M.K. van Veen, C.H.M. van der Werf, and R.E.I. Schropp, J. Non-Cryst. Solids 338–340, 655 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.03.071

Y. Mai, S. Klein, R. Carius, H. Stiebig, L. Houben, X. Geng, and F. Finger, J. Non-Cryst. Solids 352, 1859 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.11.116

H. Li, R.H. Franken, R.L. Stolk, C.H.M. van der Werf, J.K. Rath, and R.E.I. Schropp, J. Non-Cryst. Solids 354, 2087 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.046

R. Amrani, F. Pichot, L. Chahed, and Y. Cuminal, Cryst. Struct. Theory Appl. 1, 57 (2012).

G. Fugallo and A. Mattoni, Phys. Rev. B 89, 045301 (2014). https://doi.org/10.1103/PhysRevB.89.045301

O. Nast and A.J. Hartmann, J. Appl. Phys. 88, 716 (2000). https://doi.org/10.1063/1.373727

M. Jeon, C. Jeong, and K. Kamisako, Mater. Sci. Technol. 26, 875 (2010). https://doi.org/10.1179/026708309X12454008169500

M.A. Mohiddon and M.G. Krishna, J. Mater. Sci. 47, 6972 (2012). https://doi.org/10.1007/s10853-012-6647-0

D. Van Gestel, I. Gordon, and J. Poortmans, Sol. Energy Mater. Sol. Cells 119, 261 (2013). https://doi.org/10.1016/j.solmat.2013.08.014

A. Mohiddon and G. Krishna, in Crystallization – Science and Technology, edited by A. Marcello (InTech, 2012), p. 461.

V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Y. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, and V.V. Strelchuk, Semiconductors 45, 1281 (2011). https://doi.org/10.1134/S1063782611100253

V.B. Neimash, V.M. Poroshin, A.M. Kabaldin, V.O. Yukhymchuk, P.E. Shepelyavyi, V.A. Makara, and S.Y. Larkin, Ukr. J. Phys. 58, 865 (2013). https://doi.org/10.15407/ujpe58.09.0865

V. Neimash, V. Poroshin, P. Shepeliavyi, V. Yukhymchuk, V. Melnyk, A. Kuzmich, V. Makara, and A.O. Goushcha, J. Appl. Phys. 114, 213104 (2013). https://doi.org/10.1063/1.4837661

V.B. Neimash, A.O. Goushcha, P.E. Shepeliavyi, V.O. Yukhymchuk, V.A. Dan'ko, V.V. Melnyk, and A.G. Kuzmich, Ukr. J. Phys. 59, 1168 (2014). https://doi.org/10.15407/ujpe59.12.1168

H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981). https://doi.org/10.1016/0038-1098(81)90337-9

I.H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986). https://doi.org/10.1016/0038-1098(86)90513-2

S. Chen and I.C. Hsleh, Solid State Technol. 39, 113 (1996).

A.A.D.T. Adikaari and S.R.P. Silva, J. Appl. Phys. 97, (2005).

T.Y. Choi, D.J. Hwang, and C.P. Grigoropoulos, Opt. Eng. 42, 3383 (2003). https://doi.org/10.1117/1.1563232

J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, Appl. Phys. Lett. 85, 1232 (2004). https://doi.org/10.1063/1.1782267

V.A. Volodin and A.S. Kachko, Semiconductors 45, 265 (2011). https://doi.org/10.1134/S1063782611020254

A.V. Emelyanov, A.G. Kazanskii, P.K. Kashkarov, O.I. Konkov, E.I. Terukov, P.A. Forsh, M.V. Khenkin, A.V. Kukin, M. Beresna, and P. Kazansky, Semiconductors 46, 749 (2012). https://doi.org/10.1134/S1063782612060097

P.J. Newby, B. Canut, J.-M. Bluet, S. Gom`es, M. Isaiev, R. Burbelo, K. Termentzidis, P. Chantrenne, L.G. Fr’echette, and V. Lysenko, J. Appl. Phys. 114, 014903 (2013). https://doi.org/10.1063/1.4812280

M. Balkanski, R.F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983). https://doi.org/10.1103/PhysRevB.28.1928

B. Stoib, S. Filser, N. Petermann, H. Wiggers, M. Stutzmann, and M.S. Brandt, Appl. Phys. Lett. 104, 161907 (2014). https://doi.org/10.1063/1.4873539

S. P’erichon, V. Lysenko, B. Remaki, D. Barbier, and B. Champagnon, J. Appl. Phys. 86, 4700 (1999). https://doi.org/10.1063/1.371424

E. Bustarret, M.A. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988). https://doi.org/10.1063/1.99054

W. Cheng and S.-F. Ren, Phys. Rev. B 65, 205305 (2002). https://doi.org/10.1103/PhysRevB.65.205305

A. Hiraki, Low Temperature Reactions at Si/metal Interfaces; What Is Going on at the Interfaces? (NorthHolland, Amsterdam, 1984).

Published
2019-01-08
How to Cite
Neimash, V., Dovbeshko, G., Shepelyavyi, P., Danko, V., Melnyk, V., Isaiev, M., & Kuzmich, A. (2019). Raman Scattering in the Process of Tin-Induced Crystallization of Amorphous Silicon. Ukrainian Journal of Physics, 61(2), 143. https://doi.org/10.15407/ujpe61.02.0143
Section
Solid matter