Surface Patterns in Catalytic Carbon Monoxide Oxidation Reaction

  • I. S. Bzovska Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • I. M. Mryglod Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
Keywords: catalytic oxidation reaction, reaction-diffusion model, spatio-temporal patterns, Hopf bifurcation

Abstract

The mechanism of spatio-temporal pattern formation at the catalytic oxidation of carbon monoxide on the Pt(110) surface has been studied. The surface may contain structurally different areas, which are formed in the course of the CO-induced transition from the reconstructed 1×2 phase to the 1×1 (bulk) one. Temporal and spatial instabilities in the system are analyzed, by using the methods of the linear theory of stability and numerical simulations. Fragments of spatio-temporal structures of the oxygen coverage together with fragments of the surface 1 × 1 structure are shown to emerge on the inhomogeneous surface at certain system parameters. The distribution of the carbon monoxide coverage is found to be almost homogeneous in space and independent of the surface geometry.

References

M. Bar, S. Nettesheim, H.H. Rotermund, M. Eiswirth, and G. Ertl, Phys. Rev. Lett. 74, 1246 (1995). https://doi.org/10.1103/PhysRevLett.74.1246 https://www.ncbi.nlm.nih.gov/pubmed/10058971

K.C. Rose, D. Battogtokh, A. Mikhailov, R. Imbihl, W. Engel, and A.M. Bradshaw, Phys. Rev. Lett. 76, 3582 (1996). https://doi.org/10.1103/PhysRevLett.76.3582 https://www.ncbi.nlm.nih.gov/pubmed/10061004

A. von Oertzen, H.H. Rotermund, A.S. Mikhailov, and G. Ertl, J. Phys. Chem. B 104, 3155 (2000). https://doi.org/10.1021/jp9927799

V.V. Gorodetskii and W. Drachsel, Appl. Cat. A 188, 267 (1999). https://doi.org/10.1016/S0926-860X(99)00212-4

A.M. Zhabotinsky and A.N. Zaikin, Nature 255, 535 (1970).

V.K. Vanag, Physics-Uspekhi (Advances in Physical Sciences) 174, 991 (2004) (in Russian).

N. Pavlenko, Phys. Rev. E 77, 026203 (2008). https://doi.org/10.1103/PhysRevE.77.026203 https://www.ncbi.nlm.nih.gov/pubmed/18352099

R.B. Hoyle, A.T. Anghel, M.R.E. Proctor, and D.A. King, Phys. Rev. Lett. 98, 226102 (2007). https://doi.org/10.1103/PhysRevLett.98.226102 https://www.ncbi.nlm.nih.gov/pubmed/17677863

J. Verdasca, P. Borckmans, and G. Dewel, Phys. Rev. E 64, 055202 (2001). https://doi.org/10.1103/PhysRevE.64.055202 https://www.ncbi.nlm.nih.gov/pubmed/11736000

H. Levine and X. Zou, Phys. Rev. E 48, 50 (1992). https://doi.org/10.1103/PhysRevE.48.50

O.I. Gichan, L.B. Lerman, L.G. Grechko, and Yu.P. Sklyarov, Bulletin of Kiev university. Series: Physics & Mathematics 1, 311 (2005) (in Ukrainian).

I.S. Bzovska and I.M. Mryglod, Condens. Matter Phys. 13, 34801 (2010). https://doi.org/10.5488/CMP.13.34801

M. Bertram and A.S. Mikhailov, Phys. Rev. E 67, 036207 (2003). https://doi.org/10.1103/PhysRevE.67.036207 https://www.ncbi.nlm.nih.gov/pubmed/12689153

O.I. Gichan and L.G. Grechko, Bulletin of University of Kyiv. Series: Physics & Mathematics 4, 311 (2007) (in Ukrainian).

W. Ebeling, Patterns Formation in Irreversible Processes (Moscow–Izhevsk, 2004) (in Russian).

A.I. Olemskoi and I.A. Shuda, Statistical Theory of SelfOrganized Complex Systems (Sumy Univ. Publ. House, Sumy, 2010) (in Russian).

I.S. Bzovska and I.M. Mryglod, Preprint ICMP-12-14U (Institute for Condensed Matter Physics, Lviv, 2012) (in Ukrainian).

Published
2019-01-08
How to Cite
Bzovska, I., & Mryglod, I. (2019). Surface Patterns in Catalytic Carbon Monoxide Oxidation Reaction. Ukrainian Journal of Physics, 61(2), 134. https://doi.org/10.15407/ujpe61.02.0134
Section
Solid matter