Can Quantum Geometrodynamics Complement General Relativity?

  • V. E. Kuzmichev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Kuzmichev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: universe, general relativity, quantum geometrodynamics, cosmology

Abstract

The properties of the universe as a whole are considered on the grounds of classical and quantum theories. For the maximally symmetric geometry, it is shown that the main equation of the quantum geometrodynamics is reduced to the non-linear Hamilton–Jacobi equation. In the semiclassical approximation, this non-linear equation is linearized and reduces to the Friedmann equation with the additional quantum source of gravity in the form of the stiff Zel’dovich matter. The semiclassical wave functions of the universe, in which different types of matter-energies dominate, are obtained. The cases of the domination of radiation, barotropic fluid, and new quantum matter-energy are discussed. The probability of the transition from the quantum state, where radiation dominates, into the state, in which a barotropic fluid in the form of a dust is dominant, is calculated.

References

L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1965).

V.E. Kuzmichev and V.V. Kuzmichev, Acta Phys. Pol. B 40, 2877 (2009) [arXiv:0905.4142 [gr-qc]].

V.E. Kuzmichev and V.V. Kuzmichev, Ukr. J. Phys.55, 626 (2010).

J.B. Hartle and S.W. Hawking, Phys. Rev. D 28, 2960 (1983). https://doi.org/ 10.1103/PhysRevD.28.2960

G.W. Gibbons and J.B. Hartle, Phys. Rev. D 42, 2458 (1990). https://doi.org/ 10.1103/PhysRevD.42.2458

R. Bousso and S.W. Hawking, Grav. Cosmol. Suppl. 4, 28 (1998) [gr-qc/9608009].

K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014). https://doi.org/ 10.1088/1674-1137/38/9/090001

J.D. Brown and D. Marolf, Phys. Rev. D 53, 1835 (1996) [gr-qc/9509026]. https://doi.org/ 10.1103/PhysRevD.53.1835

V.E. Kuzmichev and V.V. Kuzmichev, Acta Phys. Pol. B 39, 979 (2008) [arXiv:0712.0464 [gr-qc]].

V.E. Kuzmichev and V.V. Kuzmichev, Acta Phys. Pol. B 44, 2051 (2013) [arXiv:1307.2383 [gr-qc]]. https://doi.org/ 10.5506/APhysPolB.44.2051

V.E. Kuzmichev and V.V. Kuzmichev, Ukr. J. Phys. 60, 664 (2015). https://doi.org/ 10.15407/ujpe60.07.0664

P.A.M. Dirac, Proc. Roy. Soc. A 246, 333 (1958). https://doi.org/ 10.1098/rspa.1958.0142

R. Arnowitt, S. Deser, C.M. Misner, in: Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, New York, 1962); [e-print arXiv:gr-qc/0405109].

C.M. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973).

L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields. Course of Theoretical Physics, Vol. 2 (Butter-worth-Heinemann, Amsterdam, 1975).

A.D. Linde, Elementary Particle Physics and Inflationary Cosmology, (Harwood, Chur, 1990).

V.E. Kuzmichev and V.V. Kuzmichev, Eur. Phys. J. C 23, 337 (2002) [astro-ph/0111438]. https://doi.org/ 10.1007/s100520100850

B. Novosyadlyj, in: Dark Energy: Observational Evidence and Theoretical Models, edited by V. Shulga (Akademperiodyka, Kyiv, 2013).

E.W. Kolb and M.S. Turner, The Early Universe (Addison-Wesley, Redwood City, 1990).

I. Dymnikova and M. Fil'chenkov, Phys. Lett. B 545, 214 (2002). https://doi.org/ 10.1016/S0370-2693(02)02620-5

M. Rowan-Robinson, Cosmology (Clarendon Press, Oxford, 2004).

Published
2019-01-06
How to Cite
Kuzmichev, V., & Kuzmichev, V. (2019). Can Quantum Geometrodynamics Complement General Relativity?. Ukrainian Journal of Physics, 61(5), 449. https://doi.org/10.15407/ujpe61.05.0449
Section
Astrophysics and cosmology