Raman Spectra of Graphene-Like Nanoparticles of Molybdenum and Tungsten Disulfides

  • A. Naumenko Taras Shevchenko National University of Kyiv
  • L. Kulikov Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • N. Konig Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
Keywords: MoS2, WS2 layered materials, graphene-like materials, Raman spectroscopy, vibrational-electronic interaction

Abstract

The Raman spectra obtained in the case of graphene-like 2H-MoS2 and 2H-WS2 nanoparticles and depending on their average sizes in the [013] and [110] crystallographic directions are reported. It is established that the Raman spectra of graphene-like 2H-MoS2 nanoparticles and micron particles are closely related. Similarities of the Raman spectra point to the homogeneity of graphene-like 2H-MoS2 nanoparticles. The small shifts and the Raman spectrum line widening, for graphene-like 2H-MoS2 and 2H-WS2 nanoparticles, which are caused by the influence of the sizes of nanoparticles and their anisotropy, have been observed. The dependence of Raman spectra of graphene-like 2H-MoS2 nanoparticles on the their size in the crystallographic direction [110] is first shown, i.e. the positions of bands in the spectrum depend not only on the number of nanolayers S-Mo-S, but also on the size in the [110] direction.

References

Z.Y. Zeng, Z.Y. Yin, X. Huang,H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Angew. Chem. Int. Ed. 50, 1109 (2011). https://doi.org/10.1002/anie.201005394

H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang, and H. Zhang, Small 8, 682 (2012). https://doi.org/10.1002/smll.201101958

H. Li,Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. Fam, A. Tok, Q. Zhang, and H. Zhang, Small ,8, 63 (2012). https://doi.org/10.1002/smll.201101016

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896

K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov,and A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102

J.N. Coleman, M. Lotya, A. O'Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De et al., Science 331, 568 (2011). https://doi.org/10.1126/science.1194975

X. Huang,Z. Yin, S.X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, F. Boey, and H.Zhang, Small 7, 1876 (2011). https://doi.org/10.1002/smll.201002009

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279

X. Huang, X. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012). https://doi.org/10.1039/C1CS15078B

X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang, Adv. Mater. 24, 5979 (2012). https://doi.org/10.1002/adma.201201587

Q. He, S.X. Wu, Z.Y. Yin, and H. Zhang, Chem. Sci. 3, 1764 (2012). https://doi.org/10.1039/c2sc20205k

H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, Small 9, 1974 (2013), doi: 10.1002/smll.201202919. https://doi.org/10.1002/smll.201202919

A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 3, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Adv. Phys., 60, 413 (2011). https://doi.org/10.1080/00018732.2011.582251

P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A.C. Ferrari, Nature Mater. 11, 294 (2012). https://doi.org/10.1038/nmat3245

S. Najmaei, Z. Liu, P.M. Ajayan, and J. Lou, Appl. Phys. Lett. 100, 013106 (2012). https://doi.org/10.1063/1.3673907

J.H. Fan, P. Gao, A.M. Zhang, B.R. Zhu, H.L. Zeng, X.D. Cui, R. He, and Q.M. Zhang, J. of Appl. Phys. 115, 053527 (2014). https://doi.org/10.1063/1.4862859

J.L. Verble, and T.J. Wieting, Phys. Rev. Lett. 25, 362 (1970). https://doi.org/10.1103/PhysRevLett.25.362

T.J. Wieting, and J.L. Verble, Phys. Rev. B 3, 4286 (1971). https://doi.org/10.1103/PhysRevB.3.4286

T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, and E. Matsuura, J. Phys. Soc. Jpn. 49, 1069 (1980). https://doi.org/10.1143/JPSJ.49.1069

T. Sekine, T. Nakashizu, K. Toyoda, K. Uchinokura, and E. Matsuura, Solid State Comm. 35, 371 (1980). https://doi.org/10.1016/0038-1098(80)90518-9

C. Sourisseau, F. Cruege, M. Fouassier, M. Alba, Chem. Phys. 150, 281 (1991). https://doi.org/10.1016/0301-0104(91)80136-6

G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, C. Schuller, and T. Korn, Appl. Phys. Lett. 101, 101906 (2012). https://doi.org/10.1063/1.4751266

X. Zhang, W.P. Han, J.B. Wu, S. Milana,Y. Lu, Q.Q. Li, A.C. Ferrari, and P.H. Tan, ArXiv 2012, arXiv:1212.6796.

A. Molina-Sanchez and L. Wirtz, Phys. Rev. B 84, 155413 (2011). https://doi.org/10.1103/PhysRevB.84.155413

J.L. Veblde and T.J. Wieting, Phys. Rev. Lett. 25, 362 (1970). https://doi.org/10.1103/PhysRevLett.25.362

C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, J. Phys. Chem. C 115, 16354 (2011). https://doi.org/10.1021/jp205116x

J. Ribeiro-Soares et al., Phys. Rev. B 90, 115438 (2014). https://doi.org/10.1103/PhysRevB.90.115438

J.L. Veblde and T.J. Wieting, Solid State Comm. 11, 11941 (1972).

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4(5), 2695 (2010). https://doi.org/10.1021/nn1003937

J. Verble and T. Wieting, Phys. Rev. Lett. 25, 362 (1970). https://doi.org/10.1103/PhysRevLett.25.362

G. Frey, R. Tenne, M. Matthews, M. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 60, 2883 (1999). https://doi.org/10.1103/PhysRevB.60.2883

T. Wieting and J. Verble, Phys. Rev. B, 3, 4286 (1971). https://doi.org/10.1103/PhysRevB.3.4286

H. Li, Q. Zhang, C.C.R. Yap, B.K Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012). https://doi.org/10.1002/adfm.201102111

Published
2019-01-06
How to Cite
Naumenko, A., Kulikov, L., & Konig, N. (2019). Raman Spectra of Graphene-Like Nanoparticles of Molybdenum and Tungsten Disulfides. Ukrainian Journal of Physics, 61(6), 556. https://doi.org/10.15407/ujpe61.06.0561
Section
Nanosystems