Low-Temperature Thermoluminescence Studies of the Nanocrystalline Yttria-Stabilized Zirconia

  • O. Stanovyi Taras Shevchenko National University of Kyiv
  • S. Kutovyy Taras Shevchenko National University of Kyiv
  • Yu. Morozov Taras Shevchenko National University of Kyiv
  • A. Naumenko Taras Shevchenko National University of Kyiv
  • I. Dmitruk Taras Shevchenko National University of Kyiv
  • A. Borodyanska Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
Keywords: thermoluminescence, zirconia, method of fractional curves, activation energies of traps

Abstract

The spectra of thermoluminescence (TL) of nano-sized powders ZrO2 stabilized by Y2O3 (YSZ) in the temperature range of 80–350 K have been studied for the first time. For comparison, the TL spectra of pure ZrO2 are obtained. It is found that the TL in undoped ZrO2 is mainly caused by intrinsic defects, whereas, in doped zirconia, it is caused by dopants. Using the fractional curve glowing method, the values of activation energies of traps in YSZ have been determined. The model of TL in YSZ has been proposed.

References

R.C. Buchanan and S. Pope, J. Electrochem. Soc. 130, 962 (1983). https://doi.org/10.1149/1.2119868

M. Kilo, C. Argirusis, G. Borchardt, and R.A. Jackson, Phys. Chem. Chem. Phys. 5, 2219 (2003). https://doi.org/10.1039/B300151M

M. Biswas, P.K. Ojha, E.M. Jayasingh, and C.D. Prasad, Nanomater. Nanotechn. 1, 55 (2011).

G. Pang, S. Chen, Y. Zhu et al., J. Phys. Chem. B 105, 4647 (2001). https://doi.org/10.1021/jp010334q

J. Cheng, R. Pornprasertsuk, H. Huang et al., Proc. Mater. Research Soc., Fall Mtg 801, BB6.10 (2003).

J.-M. Costantini, F. Beuneu, K. Schwartz, and C. Trautmann, J. Phys.: Condens. Matter 22, 315402 (2010). https://doi.org/10.1088/0953-8984/22/31/315402

V.M. Orera, R.I. Merino, Y. Chen et al., Phys. Rev. B 42, 9782 (1990). https://doi.org/10.1103/PhysRevB.42.9782

V.M. Orera, R.I. Merino, Y. Chen et al., Radiat. Eff. Defects in Solids 119–121, 907 (1991). https://doi.org/10.1080/10420159108220841

C.B. Azzoni and A. Peleari, Phys. Rev. B 53, 5 (1996). https://doi.org/10.1103/PhysRevB.53.5

J.-M. Costantini, F. Beuneu, M. Fasoli et al., J. Phys.: Condens. Matter 23, 115901 (2011). https://doi.org/10.1088/0953-8984/23/11/115901

R. Chen, Thermolum. Dosim. 1, 49 (1984).

C. Viazzi, J.-P. Bonino, F. Ansart, and A. Barnab?e, J. of Alloys and Compounds 452, 377–383 (2008). https://doi.org/10.1016/j.jallcom.2006.10.155

G.C. Taylor and E. Lilley, J. Phys. D: Appl. Phys. 11, 567 (1978). https://doi.org/10.1088/0022-3727/11/4/020

S.W.S. McKeever, Thermoluminescence of Solids (Cambridge Univ. Press, Cambridge, 1988).

K.A. Shoaib, F.H. Hashmi, M. Ali et al., Phys. Stat. Sol. A 40, 605 (1977). https://doi.org/10.1002/pssa.2210400228

J.T. Randall and M.H.F. Wilkins, Proc. Roy. Soc. Lond. 184, 366 (1945).

J.T. Randall and M.H.F. Wilkins, Proc. Roy. Soc. Lond. 184, 390 (1945). https://doi.org/10.1098/rspa.1945.0025

C. Furetta, Handbook of Thermoluminescence (World Sci., Singapore, 2003).

A.F. Gumenyuk and S.Yu. Kutovyi, Ukr. Fiz. Zh. 45, 1093 (2000).

A.F. Gumenjuk, S.Yu. Kutovyi, and M.O. Grebenovish, Funct. Mater. 9, 314 (2002).

A.F. Gumenjuk and S.Yu. Kutovyi, Centr. Europ. J. Phys. 1, 307 (2003).

D. Munoz Ramo, P.V. Sushko, J.L. Gavartin, and A.L. Shluger, Phys. Rev. B 78, 235432 (2008). https://doi.org/10.1103/PhysRevB.78.235432

B. Kr’alik, E.K. Chang, and S.G. Louie, Phys. Rev. B 57, 7027 (1998). https://doi.org/10.1103/PhysRevB.57.7027

Published
2019-01-06
How to Cite
Stanovyi, O., Kutovyy, S., Morozov, Y., Naumenko, A., Dmitruk, I., & Borodyanska, A. (2019). Low-Temperature Thermoluminescence Studies of the Nanocrystalline Yttria-Stabilized Zirconia. Ukrainian Journal of Physics, 61(6), 489. https://doi.org/10.15407/ujpe61.06.0489
Section
Optics, lasers, and quantum electronics