Enhancement of Luminescence from a Carbon Nanotube Aqueous Suspension at the Cysteine Doping: Influence of the Adsorbed Polymer

  • N. V. Kurnosov B.I. Verkin Institute for Low Temperature Physics and Engineering, Nat. Acad. of Sci. of Ukraine
  • V. S. Leontiev B.I. Verkin Institute for Low Temperature Physics and Engineering, Nat. Acad. of Sci. of Ukraine
  • V. A. Karachevtsev B.I. Verkin Institute for Low Temperature Physics and Engineering, Nat. Acad. of Sci. of Ukraine
Keywords: luminescence, exciton, cysteine, DNA, carbon nanotube, structure defect


We have studied the enhancement of the luminescence intensity from semiconducting carbon nanotubes with the adsorbed polymer (DNA) in an aqueous suspension due to the doping with amino acid cysteine. The intensity increase is caused by the presence of a thiol group in the cysteine structure, which allows a reduction of defects on the nanotube surface that quench the emission. It is observed that the initial nanotube/polymer weight ratio affects the dependence of the luminescence intensity on the cysteine concentration so that it is shifted toward greater concentrations in case of the 1 : 1 ratio comparing to the dependence obtained for a suspension with the 1 : 0.5 ratio. Such shift can be explained by a greater surface coverage with the polymer that restricts the access of cysteine molecules to nanotube defects. We have also noted that the obtained dependences vary for nanotubes with different chiralities, which can be attributed to different densities of a polymer coverage on their surfaces.


V. Perebeinos, J. Tersoff, and P. Avouris, Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 92, 257402 (2004) [DOI: 10.1103/PhysRevLett.92.257402].

M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Exciton photophysics of carbon nanotubes, Ann. Rev. Phys. Chem. 58, 719 (2007) [DOI: 10.1146/annurev.physchem.58.032806.104628].

N. Ai, W. Walden-Newman, Q. Song, S. Kalliakos, and S. Strauf, Suppression of blinking and enhanced exciton emission from individual carbon nanotubes, ACS Nano 5, 2664 (2011) [DOI: 10.1021/nn102885p].

M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kitrell, J. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593 (2002) [DOI: 10.1126/science.1072631].

V.A. Karachevtsev, in: Photophysics of carbon nanotubes interfaced with organic and inorganic Materials, edited by I.A. Levitsky, W.B. Euler, V.A. Karachevtsev (Springer, London, 2012), p. 89.

G. Hong, S. Diao, A.L. Antaris, and H. Dai, Carbon nanomaterials for biological imaging and nanomedicinal therapy, Therapy Chem. Rev. 115, 10816 (2015) [DOI: 10.1021/acs.chemrev.5b00008].

A.J. Siitonen, D.A. Tsyboulski, S.M. Bachilo, and R.B.Weisman, Dependence of exciton mobility on structure in single-walled carbon nanotubes, J. Phys. Chem. Lett. 1, 2189 (2010) [DOI: 10.1021/jz100749c].

S. Kruss, A.J. Hilmer, J. Zhang, N.F. Reuel, B. Mu, and M.S. Strano, Carbon nanotubes as optical biomedical sensors, Adv. Drug Deliv. Rev. 65, 1933 (2013) [DOI: 10.1016/j.addr.2013.07.015].

G. Dukovic, B.E. White, Z. Zhou, F. Wang, S. Jockusch, M.L. Steigerwald, T.F. Heinz, R.A. Friesner, N.J. Turro, and L.E. Brus, Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes, J. Am. Chem. Soc. 126, 15269 (2004) [DOI: 10.1021/ja046526r].

A.J. Lee, X. Wang, L.J. Carlson, J.A. Smyder, B. Loesch, X. Tu, M. Zheng, and T.D. Krauss, Bright fluorescence from individual single-walled carbon nanotubes, Nano Lett. 11, 1636 (2011) [DOI: 10.1021/nl200077t].

N.V. Kurnosov, V.S. Leontiev, A.S. Linnik, O.S. Lytvyn, and V.A. Karachevtsev, Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer, Chem. Phys. 438, 23 (2014) [DOI: 10.1016/j.chemphys.2014.04.006].

N.V. Kurnosov, V.S. Leontiev, A.S. Linnik, and V.A. Karachevtsev, Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes, Chem. Phys. Lett. 623, 51 (2015) [DOI: 10.1016/j.cplett.2015.01.046].

H. Cathcart, V. Nicolosi, J.M. Hughes, W.J. Blau, J.M. Kelly, S.J. Quinn, and J.N. Coleman, Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions, J. Am. Chem. Soc. 130, 12734 (2008) [DOI: 10.1021/ja803273s].

V.A. Karachevtsev, A.Yu. Glamazda, A.M. Plokhotnichenko, V.S. Leontiev, and A.S. Linnik, Comparative study on protection properties of anionic surfactants (SDS, SDBS) and DNA covering of single-walled carbon nanotubes against pH influence: luminescence and absorption spectroscopy study, Materialwissenschaft und Werkstofftechnik 42, 41 (2011) [DOI: 10.1002/mawe.201100728].

T.J. McDonald, D. Svedruzic, Y.-H. Kim, J.L. Blackburn, S.B. Zhang, P.W. King, and M.J. Heben, Wiring-up hydrogenase with single-walled carbon nanotubes, Nano Lett. 11, 3528 (2007) [DOI: 10.1021/nl072319o].

A.G. Walsh, A.N. Vamivakas, Y. Yin, S.B. Cronin, M.S. Unlu, B.B. Goldberg, and A.K. Swan, Screening of excitons in single, suspended carbon nanotubes, Nano Lett. 7, 1485 (2007) [DOI: 10.1021/nl070193p].

V.A. Karachevtsev, A.M. Plokhotnichenko, A.Yu. Glamazda, V.S. Leontiev, and I.A. Levitsky, Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies, Phys. Chem. Chem. Phys. 16, 10914 (2014) [DOI: 10.1039/C4CP00776J].

E. Kaniowska, G. Chwatko, R. Glowacki, P. Kubalczyk, and E. Bald, Urinary excretion measurement of cysteine and homocysteine in the form of their S-pyridinium derivatives by high-performance liquid chromatography with ultraviolet detection, J. Chromatogr. A 798, 27 (1998) [DOI: 10.1016/S0021-9673(97)01193-X].

How to Cite
Kurnosov, N., Leontiev, V., & Karachevtsev, V. (2019). Enhancement of Luminescence from a Carbon Nanotube Aqueous Suspension at the Cysteine Doping: Influence of the Adsorbed Polymer. Ukrainian Journal of Physics, 61(10), 932. https://doi.org/10.15407/ujpe61.10.0932